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Abstract. We present a systematic study of catastrophic forgetting
(CF), i.e., the abrupt loss of previously acquired knowledge, when re-
training deep recurrent LSTM networks with new samples. CF has re-
cently received renewed attention in the case of feed-forward DNNs, and
this article is the first work that aims to rigorously establish whether
deep LSTM networks are afflicted by CF as well, and to what degree.
In order to test this fully, training is conducted using a wide variety of
high-dimensional image-based sequence classification tasks derived from
established visual classification benchmarks (MNIST, Devanagari, Fash-
ionMNIST and EMNIST). We find that the CF effect occurs universally,
without exception, for deep LSTM-based sequence classifiers, regardless
of the construction and provenance of sequences. This leads us to con-
clude that LSTMs, just like DNNs, are fully affected by CF, and that
further research work needs to be conducted in order to determine how
to avoid this effect (which is not a goal of this study).
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1 Introduction

This article is in the context of deep recurrent neural networks (more specifically:
deep Long Short-Term Memory (LSTM) networks [13]) applied to the classifica-
tion of sequences. Sequence classification presents many challenges, such as their
variable length and the fact that their elements are often presented one after the
other (see [36] for a more in-depth review of this topic). Typical applications
of sequence classifiers are hand gesture recognition [9], human activity recog-
nition [33] and natural language processing [23]. Prominent recent methods for
sequence classification are recurrent neural networks, and in particular LSTM
networks and their deep ”extensions”, see [12] and references therein. These clas-
sification architectures are based on a similar concept as prior work on echo state
networks or reservoir computing [14], where the dynamical state of a recurrent
system (reservoir, LSTM layer) represents the current and previously presented
sequence elements, and a linear read-out mechanism is added ”on top” of that
to infer the sequence class. LSTM networks are attractive for this purpose since
they are trained by gradient descent, so the ”reservoir” can be adapted to the
sequences it should represent.
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Especially in situations where sequence classifiers need to be retrained in situ,
typically based on user interaction (e.g., learning a new hand gesture by demon-
stration), the question of incremental or continual learning becomes relevant:
what happens to knowledge of previously trained sequences when a new sequence
class is presented to a deep LSTM sequence classifier? In addition, sequence el-
ements in typical applications, like hand gesture or human activity recognition,
are typically images (or depth images) and thus quite high-dimensional and hard
to classify in their own right. So a study on catastrophic forgetting in deep LSTM
networks should be sure to address this case in particular.

1.1 Related work

The catastrophic forgetting effect Catastrophic forgetting (CF) in feed-
forward neural networks was first observed in [1] and subsequently studied in,
e.g., [7]. Recent studies in the context of DNNs are described below. Essentially,
CF is observed when a neural network is first trained on a dataset D1 and subse-
quently re-trained on a disjunct dataset D2. Very counter-intuitively, the typical
outcome of such an experimental scheme is that all that was learned from D1 is
forgotten virtually immediately, within one or two mini-batch steps. We consider
exactly such a scenario in this article, a minor difference being that samples from
D1 and D2 are image sequences, which is why LSTM classifiers are used.

Catastrophic forgetting in Deep Neural Networks (DNNs) The field of
incremental learning is broad, e.g., [25] and [10]. Recent systematic comparisons
between different DNN approaches to avoid CF are performed in, e.g., [29, 18]
or [26]. Principal recent approaches to avoid CF include ensemble methods [28,
6], dual-memory systems [30, 17, 27, 8] and regularization approaches. Whereas
[11] suggest Dropout for alleviating CF, the EWC method [20] proposes to add
a term to the energy function that protects weights that are important for the
previous sub-task(s). Importance is determined by approximating the Fisher in-
formation matrix of the DNN. A related approach is pursued by the Incremental
Moment Matching technique (IMM) (see [22]), where weights from DNNs trained
on current and past sub-tasks are “merged” using the Fisher information matrix.
Other regularization-oriented approaches are proposed in [3, 32] and [19] which
focus on enforcing sparsity of neural activities by lateral interactions within a
layer.

Catastrophic forgetting in (deep) LSTM networks There is little to no
previous work on measuring catastrophic forgetting in LSTM networks. There
seems to be a tentative consensus that LSTM might subject to CF, but we
found no scientific work documenting this systematically, for complex, high-
dimensional sequence classification problems. A simpler recurrent sequence clas-
sification model is tested for CF in [5] with the result that this model (without
modifications) exhibits strong CF. This article uses short image sequences de-
rived from MNIST as a basis for its investigation, and individual sequence ele-
ments are further reduced in dimensionality by PCA. A modified form of LSTM
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based on the Elastic Weight Consolidation method [20] is presented in [23], but
CF behavior is not systematically analyzed as the objective of the article is the
incremental training of conversational agents. A dual-memory approach to in-
cremental LSTM is presented in [15] for the purpose of land cover prediction in
high-dimensional images, again without documenting the CF effect systemati-
cally.

Table 1: Overview of each dataset’s detailed properties. Image dimensions are
given as width × height × channels. Concerning data imbalance, the largest
percentual difference in sample count between any two classes is given for training
and test data, a value of 0 indicating a perfectly balanced dataset.

Dataset
Properties

image size
number of elements class balance (%)

train test train test
Devanagari 32×32×1 18.000 2.000 0.3 2.7
EMNIST 28×28×1 345.035 57.918 2.0 2.0
FashionMNIST 28×28×1 60.000 10.000 0 0
MNIST 28×28×1 55.000 10.000 2.2 2.4

1.2 Goals and contributions of the article

We aim at determining unambiguously whether LSTM and deep LSTM-based
sequence classifiers are prone to the catastrophic forgetting effect or not when
retrained with samples from one or more additional sequence classes, especially
for the case where sequence elements are high-dimensional images that require
deep networks in order to be solved satisfactorily. We do not impose applica-
tion constraints on memory consumption or execution time when performing
incremental learning experiments as it is done in [26] since LSTM training is
memory-consuming in any case. However, we ensure realism w.r.t. causality,
meaning that the number and nature of additional classes are not known be-
forehand (i.e., in order to select a good topology for deep LSTM), which is in
accordance with [26].

Regardless of the actual outcome (CF, no CF or CF in some cases), such
an investigation is important because it provides solid justification for further
work on avoiding the CF effect in deep LSTM classifiers, or else why CF can be
ignored in applications of such architectures.

We wish to make it clear that this study does not propose methods to get
rid of catastrophic forgetting (which has proven difficult for DNNs): for the time
being, we just aim at clearly showing that this effect is an universally occurring
one for LSTM networks.
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MNIST Fashion MNIST

Devanagari EMNIST

Fig. 2: Visualization of one sample per class from the four visual classification
benchmarks used in this article.

2 Methods

The experimental paradigm is based on the notion of an incremental sequence
classification task (ISCT), which is, simply put, a sequence classification problem
divided into two disjunct parts. The first part is used for the initial training of a
deep LSTM network, whereas the second part is used for subsequent retraining.
While training on the second part of the ISCT, accuracy on the union of test
sets from both parts is monitored to detect catastrophic forgetting.

2.1 Visual benchmarks for constructing sequence classification tasks

We construct incremental sequence classification tasks based on images taken
from the following visual classification benchmarks (see Table 1 for details about
the benchmarks and Fig. 2 for a visual impression).
MNIST [21] is the common benchmark for computer vision systems and clas-
sification problems. It consists of gray scale images of handwritten digits (0-9).
EMNIST [4] is an extended version of MNIST with additional classes of hand-
written letters. There are different variations of this dataset: we extract the ten
best-represented classes from the By Class variation containing 62 classes.
Devanagari [2] contains gray-scale images of Devanagari handwritten letters.
From the 46 character classes (1.700 images per class) we extract ten random
classes.
FashionMNIST [35] consists of images of clothes in ten classes and is structured
like the MNIST dataset. We use this dataset for our investigations because it is
a “more challenging classification task than the simple MNIST digits data [35]”.

2.2 Incremental sequence classification tasks

Construction of sequence classes We construct a common pool of ten (k =
0, . . . , 9) sequence classes characterized by vectors sk ∈ RNk , whose length Nk

is randomly varied between 5 and 15, and whose integer entries ski are ran-
domly chosen from the range [0, 9]. Each sample from a sequence class k thus
has Nk elements (frames) ei, i = 0, . . . , Nk − 1, each being a (flattened) image
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Table 2: All ten sequence classes, with sequence class k being characterized by
the vector sk that defines the visual classes where individual sequence elements
(frames) are chosen from, see text for details. Please note that a visual class
(e.g., the digit class ”1” from MNIST) can appear more than once in a given
sequence class. Using these definitions, the ten sequence classes are generated
for each of the four visual benchmarks.

seq. class seq. def sk seq.class seq.def sk

0 44671365876 1 1373561961
2 35445909328241 3 9314487292918
4 3675082469 5 45406816421282
6 7534519793178 7 02890
8 69959 9 21024269755

Table 3: Incremental sequence classification tasks (ISCTs) used for measuring
catastrophic forgetting. Shown are the sequence classes (see Table 2) used for
initial training and retraining of deep LSTM models. Each ISCT is constructed
for all the benchmarks: MNIST, FashionMNIST, EMNIST and Devanagari.

ISCT initial retrain
5-5a 0,4,5,6,9 1,2,3,7,8
5-5b 0,1,2,3,4 5,6,7,8,9
5-1a 0,4,5,6,9 8
5-1b 0,1,2,3,4 9

randomly taken from class ski of one of the four visual benchmarks (see Sec. 2.1).
An overview of the constructed sequence classes is given in Table 2, and Fig. 3
gives a visual impression of actual sequence samples. The chosen sequence con-
struction strategy assumes the presence of ten visual classes in each benchmark:
where more than ten classes are available, we keep the ten best-represented ones
(EMNIST), or we keep ten random ones if all classes are equally well represented
(Devanagari).

Construction of incremental sequence classification tasks From the
pool of ten sequence classes, we construct four incremental sequence classification
tasks (ISCT) for measuring catastrophic forgetting. Two of them (denoted 5-
5a and 5-5b) use a subset of five sequence classes for initial training and five
sequence classes for retraining, whereas the two others (denoted 5-1a and 5-1b)
use five sequence classes for initial training and one sequence class for retraining.
Each ISCT contains training and test sets that are constructed from an 80/20
partition of available sequence samples. Table 3 gives an overview of the ISCTs
used for measuring catastrophic forgetting in this article.
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Fig. 3: Visualization of 3 samples (sequences), taken from an exemplary sequence
class with 13 elements (frames), with frames coming from the classes 4-3-4-5-
6-5-5-6-2-0-2-5-5 of the underlying benchmark, shown for Devanagari (top) and
FashionMNIST (bottom).

2.3 Deep LSTM models

We use a standard deep LSTM architecture with linear softmax readout layer
and cross-entropy loss function as outlined in [13]. Number and size of hidden
layers, which are all set to have the same number of LSTM cells, will be varied
in the experiments and are denoted (L, S). The LSTM model equations for
computing activations ht of a single LSTM layer read as follows:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi)

f t = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = f tct−1 + it tanh (Wxcxt +Whcht−1 + bc))

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot tanh(ct) (1)

3 Experiments

For our experiments we use the TensorFlow (v1.11) implementation of a Recur-
rent Neural Network with multiple LSTM cells under Python (v3.6). We always
use the Adam optimizer included in TensorFlow for performing gradient descent.
We distinguish two principal experimental objectives:
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– Consistency of deep LSTM models In this step, we verify that our archi-
tecture is working correctly on the given classification problems by comparing
them to the known performance of present-day DNNs on the visual bench-
marks we use. For all visual benchmarks, we train deep LSTM models on ten
sequence classes, each sequence class containing one element randomly cho-
sen from a single, distinct image class in the benchmark. The classification
of such one-element sequences amounts to classifying the images themselves,
with recurrency being effectively switched off since the sequences have length
one. If the deep LSTM architecture is chosen correctly, the classification ac-
curacy should be comparable to the known accuracy of DNNs on a particular
benchmark, thus establishing that our deep LSTMs are correctly used and
parameterized.

– Investigation of catastrophic forgetting Here, we introduce incremental
learning to our architecture: we train deep LSTM networks as described in
Sec. 2.3 on the incremental sequence classification tasks (see Sec. 2.2) in two
steps as outlined in Sec. 2: first on an initial set of sequence classes followed
by retraining on a different set of sequence classes. During retraining, an
evaluation of test accuracy is conducted on the union of test samples from
both parts of the ISCT, with the aim of detecting catastrophic forgetting
after the onset of retraining.

3.1 Consistency

Fig. 4: Consistency test results

We vary the number of hidden layers and their size (L, S) ∈ {(1, 100), (1, 200),
(1, 500), (3, 800), (5, 200)} and use a fixed learning rate of ε = 0.0001, a fixed
batch size of b = 1.000 and a fixed number of iterations I = 1.000. To make sure
the results are significant and consistent, we repeat every experiment five times
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and calculate the average loss and accuracy. Table 4 shows the results for this
preliminary experiment. As can be seen, our networks achieve accuracies that
are generally comparable to those one would obtain when using simple DNN
architectures, which makes it very plausible that our deep LSTMs are correctly
parameterized and excludes gross errors in the deep LSTM setup. Fig. 4 shows
the best result for each benchmark (in percent).

Table 4: Results of the consistency tests: Averaged accuracy over five experi-
ments.

(L, S) (1, 100) (1, 200) (1, 500) (3, 800) (5, 200)
MNIST 94.6 95.7 96.8 97.4 95.2

Fashion MNIST 86.7 87.7 88.5 88.4 85.8
Devanagari 87.9 93.3 97.1 99.4 98.4
EMNIST 87.1 88.8 91.0 97.1 95.2

3.2 Investigation of catastrophic forgetting

To test whether deep LSTM networks are prone to catastrophic forgetting when
retraining an already trained one with new sequences, we perform initial training
and retraining using the generated ISCTs (see Fig. 3 and Sec. 2.2). To exclude
that results are due to a particular choice of topology, we vary the number
and size of hidden layers (L, S) ∈ {(1, 100), (1, 200), (1, 500), (3, 800), (5, 200)}
and use a fixed learning rate ε = 0.0001, a fixed batch size b = 1.000 and a
fixed number of iterations for initial training and retraining IT = IR = 1.000.
To make sure the results are significant, we repeat every experiment five times
and calculate the average classification accuracy. To ensure the results are not
influenced by our choice of sequence classes for initial training and retraining,
we additionally average results over the 5-5a/5-5b and 5-1a/5-1b experiments.
In total we run 400 different incremental learning experiments:

– 5 different topologies: (L, S) ∈ {(1, 100), (1, 200), (1, 500), (3, 800), (5, 200)}
– 4 different ISCTs (5-5a, 5-5b, 5-1a, 5-1b) from 4 visual benchmarks
– 10 repetitions for each ISCT

Table 5 shows the averaged accuracy for the 5-1 ISCTs for all tested architec-
tures, at the end of initial training and during retraining (IT = 1000, t < IR, t ∈
{1, 1000}). The best achieved results for those experiments are shown in Fig. 5.
As can be seen, the first part of the experiments where we perform initial train-
ing shows similar results to the ones achieved in our consistency tests (which is
unsurprising). In the majority of cases, the results on five-element sequences are
even better than those we obtain on single-element sequences in the consistency
tests. As soon as we retrain the network with additional sequence classes, the
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accuracy decreases drastically and almost instantaneously to 60-80% after one
iteration and then to about 17% during the next few iterations, where it remains.
This is indeed the result one would expect for a classifier that has learned about
one sequence class and has totally forgotten about the other five it has learned
before.
Similarly, Table 6 shows the averaged accuracy for the 5-5 ISCTs for all tested

architectures, at the end of initial training and during retraining (IT = 1000, t <
IR, t ∈ {1, 1000}). The best results for this part of our study are shown in Fig. 5.
During the first couple iterations of retraining the network, the accuracy drops to
between 20% and 50% (depending on the architecture), then increases to about
50-55% during the next 25 iterations and remains there until we stop the tests
after 1.000 iterations. Again, this is the accuracy one would expect if half of the
ten sequence classes has been well learned during retraining, but the other half
has been completely forgotten.

4 Discussion and conclusions

Principal outcomes We find that sequence classifiers based on deep LSTM net-
works are heavily afflicted by catastrophic forgetting for complex, high-dimensional

Fig. 5: Results of incremental learning for the 5-1 ISCTs.
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incremental sequence classification tasks. Within only a few mini-batch itera-
tions, almost all knowledge about previously trained data is lost and the network
is able to perform an accurate classification only on the newly trained sequences.
LSTM topology has no influence at all on this effect, to the extent we were able
to test this, which is different from feed-forward DNNs where topology has a
small influence without however in any way eliminating the problem [26]. It is
relatively intuitive why this should be the case, since recurrent networks are
conceivably more sensitive to even small changes in weights due to retraining,
since each change is amplified by recurrent connections. Also in slight contrast
to feed-forward DNNs, it does not make a difference whether a single or many
classes are added during re-training, although the effect is slim at best even for
DNNs, see [26].

Significance of results We find this to be a very important result about
LSTM sequence classifiers: catastrophic forgetting is a universally occurring ef-
fect. So it is not possible to add new knowledge to a trained LSTM classifier in
a naive way without losing all previously acquired knowledge. While forgetting
in such a scenario is not unreasonable to expect simply due to limited network
resources, it should be gradual so that re-training can be stopped whenever the
onset of forgetting is detected. This ”graceful decay” behavior is however not

Table 5: Results of incremental learning for the 5-1 ISCTs: Averaged test accu-
racy (in percent) over ten experiments. During initial training, test accuracy is
measured on the first part of each ISCT, during retraining on the six sequence
classes included in either training or retraining.

(L, S) (1, 100) (1, 200) (1, 500) (3, 800) (5, 200)
MNIST

IT = 1.000 99.9 99.9 99.9 99.9 99.9
IR = 1 83.2 83.1 81.9 67.2 68.8

IR = 1.000 16.6 16.6 16.4 16.7 16.8
Fashion MNIST

IT = 1.000 99.9 99.9 99.9 99.9 99.9
IR = 1 83.2 82.8 74.3 64.1 61.9

IR = 1.000 16.6 16.6 16.7 18.4 16.8
Devanagari

IT = 1.000 69.7 71.3 77.7 98.9 97.1
IR = 1 57.9 58.9 64.9 59.4 57.4

IR = 1.000 17.4 17.1 16.7 16.0 16.6
EMNIST

IT = 1.000 93.0 93.4 95.0 99.9 99.9
IR = 1 77.5 77.6 78.9 56.6 68.4

IR = 1.000 17.6 16.7 16.5 16.8 16.8
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Table 6: Results of incremental learning for the 5-5 ISCTs: averaged test accu-
racy (in percent) over ten experiments. During initial training, test accuracy is
measured on the first part of each ISCT, during retraining on all ten sequence
classes.

(L, S) (1, 100) (1, 200) (1, 500) (3, 800) (5, 200)
MNIST

IT = 1.000 99.9 99.9 99.9 99.9 99.9
IR = 1 50.1 49.8 48.3 32.1 20.2

IR = 1.000 55.3 55.0 55.1 54.8 54.9
Fashion MNIST

IT = 1.000 99.9 99.9 99.9 99.9 99.9
IR = 1 49.9 49.2 44.6 32.2 19.9

IR = 1.000 55.0 55.1 54.9 55.3 55.0
Devanagari

IT = 1.000 70.1 71.0 78.3 98.8 96.7
IR = 1 34.9 36.3 38.6 39.1 25.7

IR = 1.000 46.1 46.2 49.2 55.5 53.9
EMNIST

IT = 1.000 92.9 93.4 95.4 99.9 99.9
IR = 1 46.5 46.8 47.6 37.7 24.1

IR = 1.000 54.4 54.1 54.1 55.0 54.9

what is observed in our experiments, and once forgetting is detected, it is already
too late to stop re-training.

Justification of using LSTMs We employ deep LSTM classifiers in this
article because the problems treated here are inherently high-dimensional and,
above all, sequential. The most important property of sequences, for the pur-
poses of this article, is that the different sequence classes need not be the same
length, i.e., samples from different sequence classes may well contain a differ-
ent number of frames. This, together with the high-dimensional nature of the
images, effectively excludes strategies that concatenate all images in a given se-
quence and present the result to a feed-forward DNN. First of all, memory usage
would be excessive. More importantly, a sequence could only be classified once
its end was reached: but to determine that, its class would have to be known. Of
course, a fixed upper limit on sequence length could be imposed, but this would
incur even higher memory requirements. For all these reasons, we believe that
the use of deep LSTMs is the only feasible choice for the problems presented
here, which are typical representatives for, e.g., video classification tasks.

Datasets used for this study The datasets, that is, the incremental se-
quence classification tasks (ISCTs) used in this study consist of image sequences
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Fig. 6: Results of incremental learning for the 5-5 ISCTs.

and are thus related to videos. The reason for not using datasets containing real
videos is that we wished to treat problems which, when not treating sequential
learning problems, can be solved to a high degree of precision so that the forget-
ting effect is pronounced enough to be observed. So, while it might be argued
that we used artificial data that are really too simple to give meaningful results,
we point out that if CF occurs even for relatively simple problems like these, it
is sure to occur for more complex problems as well (as it is the case for DNNs,
see, e.g., [26].

Context and next steps This study deliberately does not propose a so-
lution to the problem because we believe the existence of the problem needs to
be rigorously established first. It is conceivable that EWC or IMM-like mech-
anisms [20, 22] may alleviate catastrophic forgetting for deep LSTM networks,
and approaches based on generative replay [30, 34, 16] presumably generalize
to sequence classification although the generation of sequences as opposed to
single images may prove challenging. Approaches based on the so-called ”dis-
tillation loss” regularization [31, 24] will be looked into as well, mostly because
they should be pretty straightforward to implement for LSTM networks. We
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hope, by presenting these results, to encourage researchers to investigate contin-
ual training methods not only for DNNs, but for LSTM sequence classifiers as
well.
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