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Abstract— We present a learning approach that allows to de-
tect correspondences between visual and LIDAR measurements.
In contrast to approaches that rely on calibration, we propose a
learning approach that will create an implicit calibration model
from training data. Our model can provide three functions:
first of all, it can convert a measurement in one sensor into
the coordinate system of the other, or into a distribution
of probable measurements in case the transformation is not
unique. Secondly, using a correspondence observation that
we define, the model is able to decide if two visual/LIDAR
measurements are likely to come from the same object. This is
of profound importance for applications such as object detection
or tracking where contributions from several sensors need to be
combined. We demonstrate the feasibility of our approach by
training and evaluating our system on tracklets in the KITTI
database.

I. INTRODUCTION

A. Context of this work

This article is in the context of multisensory information
processing, in particular vision and LIDAR. As these sensors
take their measurements independently, it is a priori not
clear whether two measurements originate from the same
object (or more generally: from the same physical position).
To find these correspondences, standard algorithms like
object detection and tracking (i.e. DATMO) usually make
use of a calibration procedure which allows to transform
measurements of one sensor into the reference frame of
the other. Such transformations are often quite sensitive [1]
to the used measurement models (e.g., pinhole model for
camera) and calibration parameters. Moreover, because of
the very nature of the measured quantities, sometimes a
one-to-one transformation does not even exist. This is for
example the case when transforming 2D image points into a
3D coordinate system of a LIDAR device.

B. Proposed approach

While calibration approaches are often quite precise, the
calibration procedure itself is complex and error-prone and
requires considerable expertise. Furthermore, a calibration
procedure intrinsically depends on the common data rep-
resentation (e.g. calibration pattern, features), and needs
to be re-designed every time a change is made. On the
other hand, it is often rather easy and cheap to obtain a
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Fig. 1. Illustration of the multisensory correspondence problem: LIDAR
(left) and visual (right) measurements, e.g., provided by independent object
detection algorithms, ”live” in completely different spaces and are thus very
difficult to associate without applying prior knowledge.
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Fig. 2. Block architecture of the proposed correspondence detection
method.

large number of sample measurements from both sensors.
Assuming the existence of such a sample database, we
propose a simple method to extract an implicit calibration
model between vision and LIDAR sensors. We pursue a
data-driven approach where the statistics of each sensor are
used to optimally project both measurements (i.e. object-
level) onto a standardized representation format to which
generic probabilistic methods can be applied. In this way,
our approach is completely independent of the intrinsic
characteristics of the measurements, and in particular of their
dimensionality (i.e. n-d observations), leading to a strong
reduction of design and re-design effort for the conception
of multi-modal processing system in vehicles.

C. Related work

State-of-the-art approaches for IV such as [4],[6] rely on
the explicit need of a common frame where all sensors
observations can be referenced (i.e. data alignment). This
assumption greatly simplifies the association problem of
multiple data sources (e.g. LIDAR, Radar, vision). However,
in practice, a calibration procedure is required in order to
precisely determine all sensors rigid-body transformations
(i.e. extrinsic parameters) into the reference frame and their
uncertainties.



Recent works on the 3D sensor calibration have consid-
erably simplified the procedure for determining the relative
position of sensors using a set of natural features [?] or using
a single observation of a set of calibration patterns ( covering
different distances and orientations of the multi sensors field
of view)[?].

Automatic calibration approaches can also infer the extrin-
sic parameters by the means of an optimization framework
which registers sensors data in a common space (typically
2D/3D Cartesian space). Recently in [7],[8] and [9], online
strategies were proposed to achieve data registration between
a vision system and a ranging sensor by optimizing the
extrinsics following a mutual information criterion of the
sensing sources.

As an alternative to the classical approaches , the presented
work is intended to perform multi-sensor data alignment
through a probabilistic learning based framework. This ap-
proach not only provides a data alignment solution but also
models the probability accorded to the observation transfer.
Moreover, this method can provide an integrity measure of
the data alignment using extrinsic parameters in a cross-
validation scheme.

D. Contributions and novelty

This article presents a new way of detecting multimodal
correspondences for the important vision/LIDAR sensor
combination that is becoming a standard in the intelligent
vehicle domain. A main contribution of the used learning
approach is that the ”calibration” procedure is much simpler
and can in fact be handled by a non-expert regardless
of the precise type of measurements that are conducted.
Furthermore, we show that the resulting data alignment is
very computationally efficient and sufficiently accurate for
most applications. Performing all experiments using the pub-
licly available KITTI benchmark database adds significant
credibility to our results.

II. METHODS

A. Architecture overview

The complete model is composed of several components,
as visualized in Fig. 2:
• LIDAR and vision sensors
• means to measure interesting quantities in both
• Self-organized Maps (SOM) for vision and for LIDAR,

which learn to represent the inputs coming from the
respective (synchronous) measurements

• an algorithm for learning a correspondence model be-
tween SOMs

• a module for deciding when two measurements corre-
spond, based on the SOMs and the learned correspon-
dence model

Within the scope of this article, we will use both actual
measurements proposed by Honda experimental vehicle in
form of object positions, and annotated tracklets from the
KITTI database[5] as ideal data without noise. They are
used separately. As we wish not to complicate the clean

and simple algorithm we propose by details of unimodal
processing in each modality.

B. Model training

1) Learning sensor statistics with self-organizing maps:
The self-organizing map algorithm, while originally pro-
posed as a model cortical information processing, is a genera-
tive machine learning algorithm that aims to approximate the
distribution of high-dimensional data, and to represent it in
a topology-preserving way on a two-dimensional manifold.
It is in fact quite related to K-Means[10] except that the
preservation of topology makes it interesting for incremental
learning scenarios.

SOM defines a fixed N×N grid of nodes (”neurons”) ni,
each of which is associated with a so-called prototype vector
~pi. For a given input ~x, each node gets assigned an activity
zi based on the distance of its prototype to the input:

zi = d(~x, ~pi)

d(~a,~b) =

√
(~a−~b)2 (1)

As a distance measure, the euclidean distance is often used,
and so shall we. In most cases, the calculation of activity is
followed by a learning step where the prototypes are adapted
to better fit the current input:

i∗ = argmin
i

zi

~pi(t+ 1) = ~pi + ε(t)G (i∗, i, σ(t)) (~pi∗ − ~pi) (2)

G(i, j, σ = exp (−d
2(i,j)
2σ2 )) is a Gaussian with standard

deviation σ which is based on the euclidean distance between
node i and node j on the two-dimensional grid of nodes. For
faster convergence, the algorithm demands to gradually lower
the learning rate ε(t) and their neighbourhood radius σ(t)
from initially large values ε0, σ0 until the minimal values
ε∞, σ∞ are reached.

2) Learning of conditional distributions between sensors:
Supposing the SOMs are trained using the algorithm de-
scribed in Sec. II-B.1, correspondences between visual and
LIDAR SOMs are detected using a simple probabilistic
counting approach. Assuming that two sets of weights
wLij , w

V
ij exist between nodes i, j in visual and LIDAR

SOMs, both are updated as follows for each simultaneously
presented pair of visual and LIDAR measurements ~xV , ~xL:

z̃Xi =

{
1 if i = argmin

k
zXk

0 else

z̃X̄i =


1 if i = argmin

k
zX̄k

0.5 if i is neighbour to argmin
k

zX̄k

0 else

wXij = wXij + z̃Xi z̃
X̄
j (3)

where we have used a shorthand notation X = L, V (X̄
denoting the other modality, i.e., L if X = V and V
otherwise). After a sufficient amount of samples has been
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Fig. 3. Statistical models of sensory spaces acquired by self-organizing maps (SOM) for visual (left) and LIDAR sensors (right). The points represent
the position of SOM prototypes in the space of each sensor. The local density of prototypes is guided by average local density of data points.

processed, we normalize the weight matrices in order to
obtain normalized probabilities:

ΣXi =
∑
j

wXij

wXij →
wXij
ΣXi

(4)

It has to be noted that the visual and LIDAR measurements
do not need to come from the same objects. Indeed, if
this were the case, it would mean that we already know
the correspondences we wish to identify. When working
on a benchmark database like KITTI, this is the case but
when training the system on recorded data not containing
any annotations, evidently the correct correspondences are
unknown except when there is always just a single object
in sight. Therefore, the strategy we adopt is to present all
combinations of visual and LIDAR measurements taken at
a certain point in time (e.g. a single, synchronized image
and LIDAR recoding, both for real sensors and in the case
for KITTI) when learning conditional probability distribution
between sensors. This assumes there is a sufficient amount
of training data, because the ”correct” correspondences will
appear together far more often than random incorrect ones.

As we supposed that SOMs are already converged, we
disable SOM learning during the whole phase of learning
conditional distributions by setting ε(t) ≡ 0 for both SOMs.

3) Overall training procedure: The overall training pro-
cedure is given in Alg. 1. It consists of a SOM training step
and a step that determines conditional probabilities between
the SOM representations of both measurements.

C. Unimodal detection of correspondences

After training is completed, the model can be used for
detecting whether a given combination of visual and LI-
DAR measurements is likely caused by the same object. To
this end, we develop a criterion that depends on a single
parameter, the probability threshold θ. Assuming that each
measurement has generated activities zXi in both SOMs,
the criterion first computes a single binary measure cX =
{0, 1} for each conditional probability matrix wXij , using the
shorthand notation X = L, V for a certain modality, and

Algorithm 1 Model Training: Overview over the two-stage
model training procedure consisting of learning distributions with
SOMs, and learning multi-sensory conditional probabilities.

1: for t : 1 → TSOM do
2: Draw a random image i from Dtrain
3: Draw random visual measurement l ~xVil from i
4: Draw a random image i from Dtrain
5: Draw a random LIDAR measurement m ~xLim from i
6: Update visual SOM with ~xVil acc. to Sec. II-B.1
7: Update LIDAR SOM with ~xVim acc. to Sec. II-B.1
8: end for
9: Disable learning in SOMs by setting ε(t) ≡ 0

10: for t : 1 → Tcorr do
11: Draw a random image i from Dtrain
12: for (l,m) = all permutations of measurements do
13: Feed visual SOM with ~xVil → ~zV (t)
14: Feed LIDAR SOM with ~xLim → ~zL(t)
15: Update wLij , w

V
ij acc. to Sec. II-B.2

16: end for
17: Normalize wLij , w

V
ij acc. to Sec. II-B.2

18: end for

”other” for the other one:

i∗ = argmin
i

zXi (5)

j∗ = argmin
j

zX̄j (6)

P X̄ =
{
j|wXi∗j > θ

}
(7)

cX =

{
1 if j∗ ∈ P X̄
0 else

(8)

The two quantities cX express whether a best-matching unit
(BMU) at position i∗ in X can predict the best-matching unit
at index j∗ in the other modality X̄ based on the learned
conditional probabilities. Given a best-matching unit in X ,
θ is used for selecting a set of nodes P X̄ with conditional
probabilities that exceed θ. If the BMU of X̄ is an element
of the selected set, we conclude that there is a match and
set cX = 1. Thus, the threshold θ governs the strictness
of the matching: if it is high, only a small (or empty) set
of nodes P X̄ will be selected and the probability of match
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Fig. 4. Example of conditional probability distributions PX for vision (given a LIDAR node, left) and LIDAR (given a vision node, right). These
distributions are used to detect correspondences.

  

Fig. 5. The KITTI database we use for our experiments is recorded from a
moving car equipped with several cameras, a GPS device and most notably
a Velodyne LIDAR device.

diminishes. On the other hand, if θ is low, the probability
of match increases, up to the point where there will always
be a match at θ = 0. As it is often not necessary to detect
all correspondences correctly but rather to exclude unlikely
combinations, a more relaxed value of θ can help avoid
missed correspondences while still being able of reducing
the combinatorial space of correspondences.

D. Fused correspondence detection

Apart from the unidirectional mutual sensor activity pre-
dictions, one can also use a cross-verified decision of im-
proved quality. For that, the criterion of acceptance in eqn.(8)
changes to:

wXi∗j∗ × wX̄j∗i∗ > θ (9)

wXi∗j∗ + wX̄j∗i∗ > θ (10)∑
k

wXi∗kz
X̄
k ×

∑
k

wX̄j∗kz
X
k > θ (11)

where zXi is again the activity at node i in SOM X (which
can be LIDAR or vision, whereas X̄ represents the other
modality), and the indices i∗, j∗ are the indices of the BMU’s
in both sensor’s SOMs. The last eqn. (11) takes into account
not only the BMU of each SOM, but also its neighbouring
nodes plus their associated, learned conditional probabilities.

E. Training and evaluation data

We use both annotated tracklets from the public KITTI
benchmark database[5] (see also Fig. 5) and real detections

captured from dash camera and four-layer lidar. Visual
detections are obtained with openCV standard library and
lidar ones are from connectivity based clustering.

KITTI data come in the form of XML files and contain
center positions of objects in 2D image coordinates as well
as corresponding 3D laser coordinates as measured by a
Velodyne laser scanner. As the height-over-ground of a
tracklet’s center is often irrelevant for safety applications,
we take a birds-eye perspective and just consider two of the
three 3D coordinates, excluding height-over-ground. Due to
the synchronized nature of visual and LIDAR recordings in
KITTI, each tracklet can be assigned a unique visual image
and therefore a corresponding LIDAR sweep.

We use all types of objects provided by the database,
making the total number of considered tracklets 23497. For
training the model, we use 70% of this data, performing
a random split of available tracklets into train and test
databases.

In case of real sensors data, it comes in form of text
files contained center positions of objects in 2D image
coordinates as well as corresponding 3D laser point cluster
center positions. For all timestamps real associations were
labelized by human to evaluate the results.

We use pedestrians as objects filmed in 9 short scenarios,
making the total number of visual detections 8613, and total
number of lidar detections 5476. Due to the small size of data
base, we use cross-validation: for each scenario the SOM are
trained with 8 other scenarios and tested with chosen one.

F. Evaluation

In order to quantify the capacity of the trained model
to identify visual/LIDAR correspondences, we use the test
database as described in Sec. II-E. In order to prevent the
SOMs from adapting during the evaluation phase, we set
ε(t) ≡ 0 for both SOMs.

Assuming a trained model (SOMs plus conditional prob-
abilities), we process all images in the test database in a
sequential manner. For each image, we present all combi-
nations of visual and LIDAR measurements and compute
the scores cL, cV for each combination. A binary decision
on the presence of a correspondence is taken according
to eqn.(5). As this decision depends on a single threshold



Algorithm 2 Evaluation: Overview over the evaluation proce-
dure.

1: Disable learning in both SOMs by setting ε(t) ≡ 0
2: for i : 1 → (images in Dtest) do
3: Draw image i from Dtest
4: for (l,m) = combinations of measurements do
5: Feed visual SOM with ~xVil → ~zV (t)
6: Feed LIDAR SOM with ~xVim → ~zL(t)
7: Generate bin. measures cX , cX acc. to. Sec. II-C
8: end for
9: end for

10: Plot precision/recall curves

θ we can re-cast this evaluation in the form of a ROC
analysis by varying θ in the interval [0, 1] and measuring
the precision/recall rates.

An overview over the complete evaluation procedure is
given in Alg. 2.

III. EXPERIMENTS

A. Organization of training and evaluation

Model training is performed in two steps: initially, the
SOMs are trained independently of one another by drawing
random samples from the train database, see Sec. II-E, and
adapting each individual SOM according to Sec. II-B.1, with
the input vector provided by the unimodal part of the drawn
sample. Training parameters are: N = 30, ε∞ = 0.01 σ∞ =
1, ε0 = 0.6, σ0 = N

2 . Neighbourhood radius and learning
rate develop according to

σ(t) = max (σ∞, σ0 exp(−λσt)) (12)
ε(t) = max (ε∞, ε0 exp(−λεt)) , (13)

with −λε = 0.002 and λσ = 0.004.
SOM training duration is limited to TSOM = 20000 iter-

ations. Subsequently, correspondences are trained according
to Sec. II-C for another Tcorr = 20000 iterations, randomly
drawing images from the training database and feeding all
possible combinations of visual/LIDAR measurements to the
two SOMS as well as updating the two sets of weights wVij ,
wLij based on the resulting SOM activities zXj , X = L, V .
Evaluation is conducted according to Sec. II-F by iterating
over all images in the test database and measuring preci-
sion/recall rates when presenting to the model all possible
combinations of visual/LIDAR measurements in each image.

B. Results

For KITTI base we first plot a separate ROC for LIDAR-
vision and vision-LIDAR correspondence detection, given in
Fig. 6. As can be expected, the LIDAR-vision-based corre-
spondence detection gives better results, very likely because
the vision-LIDAR transformation is one-to-one but not the
other way round. We observe as well that performance is
acceptable given that no prior knowledge was used at all
but it is not an ideal ROC either. In a further experiment,
we wish to back the claim made in Sec. I that the proposed
method was able to handle arbitrary measurements without
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Fig. 6. ROCs for vision-LIDAR (red curve) and LIDAR-vision (green
curve) correspondence detection. As can be expected, LIDAR-vision pro-
vides slightly better performance as the associated transformation is one-to-
one.
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Fig. 7. ROCs for vision-LIDAR (red curve) and LIDAR-vision (green
curve) correspondence detection, where laser measurements are augmented
by object size. By comparison to Fig. 6, we observe that this irrelevant
information is ignored.

requiring explicit models. To this end, we repeat the previous
experiment while tracklet width and tracklet height to the
laser measurement, bringing up its dimensionality to 4. The
ROCs obtained in this way are shown in Fig. 7. We see that
the addition of additional information does not impair the
ability of our system to detect correspondences. On the other
hand, performance is not improved either, because the added
information is irrelevant to the transformation to be com-
puted. This experiment therefore shows that our model, due
to the learning approach, is able to process very diverse types
of measurements, and automatically extracts the information
required for finding correspondences. Lastly, we evaluate the
three fusion strategies proposed in Sec. II-D, which means
that for a pair of visual and LIDAR measurements, there will
now be only one decision on correspondence, not two as
in previous experiments. The overall performance is shown
in Fig. 8 and show that the fused decision outperforms
any single unimodal one, boosting the already satisfactory
performance even further.

For real sensors the ROCs are calculated using only
complex activity predictions [11] as the most effective. The
results are seen in Fig. [9]. One can observe low quality
for unidirectional correspondences detections and very high
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Fig. 9. ROCs for fused correspondence detection in the case of real sensors data. The red ”complex” curve represents the cross-verified strategy of
eqn.(11). unimodal ones (red and green curves)

quality for fused one. It can be explained by non-symmetrical
detections nature and small number of detected objects per
frame.

IV. DISCUSSION AND CONCLUSIONS

We have presented a learning approach to solve the prob-
lem of finding visual/LIDAR correspondences and validated
its performance on a widely accepted benchmark database.
In this section, we will review and justify the components
of our model and outline principal conclusions and further
research works.

A. Model justification

The hybrid SOM-based architecture we propose here is
based on two necessities: first, to have a generic model that
will work with any kind of visual/laser measurements. This
means that the model must be able to work regardless what
is actually measured by each sensor. For a camera, this could
be, e.g., pixel position of interest points, but also center
position, size and identity if an object detection algorithm is
used, or center position, size and speed if tracking is added.

By using the self-organizing map architecture, every mea-
surement is down-projected to a 2D image-like representation
in a way that is statistically optimal and respects a certain
topological constraint that allows to easily visualize and
interpret a SOM’s activity. For ensuring statistical optimality,
we use a variant of the SOM model that has a well-defined
energy function[11], which makes it actually very easy to
detect measurement outliers that should be ignored.

Secondly, we want a model that will not fail even when
the transformation between modalities is not one-to-one in
both directions. To this end, we adapted a purely probabilistic
approach, on top of the SOM mechanism, that will simply
respond by a multi-peaked probability distribution in case
there is inherent ambiguity due to non-unique transforma-
tions.

B. Discussion of results
As seen in Sec. III, the quality of correspondence finding

is very satisfactory given that we did not bring in any specific
expert knowledge. In addition, the threshold θ allows us to
smoothly change the behavior of the system, from a point
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Fig. 8. ROCs for fused correspondence detection. The blue ”complex”
curve represents the cross-verified strategy of eqn.(11). The cyan ”simple-
add” curve corresponds to eqn. (10), and the violet ”simple-mult” one to
eqn. (9). It is apparent that all fusion methods outperform the unimodal
ones (red and green curves).

where there are few correct correspondences but also few
incorrect ones, to a point where there are many correct cor-
respondences but also some incorrect ones. For example, for
a multimodal tracking system a higher false positive rate can
be acceptable if no correspondences are incorrectly rejected,
since tracking can take into account past information and thus
correct the occasional incorrect correspondence. Another
very encouraging fact is that the quality of correspondence
detection can be significantly improved by considering not
only both unidirectional correspondences in isolation, but a
fusion of both. As a proper fusion should be, it is indeed
better-performing than any single contribution to it.

C. Conclusion

We have shown that a learning-based approach can suc-
cessfully solve the problem of multimodal correspondence
detection, in particular between visual and LIDAR sensors.
The only prerequisite is a collection of (unlabeled) data
which is usually easy to obtain. No expert effort is required
at all, and in particular no detailed models of the data
acquisition process by the used sensors. The technique is
very computationally efficient, and consumes no significant
computational load, thus making it suitable for embedded
operation. We hope to make this technique even more
appealing by better exploiting the structure of conditional
probabilities for even better-performing fusion strategies.
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