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Michaël Garcia Ortiz, Benjamin Dittes, Jannik Fritsch, and Alexander
Gepperth

michael.garcia.ortiz@gmail.com, benjamin.dittes@honda-ri.de,

jannik.fritsch@honda-ri.de, alexander.gepperth@honda-ri.de

Honda Research Institute Europe GmbH
Carl-Legien-Str.30, 63073 Offenbach,

Germany

CoR-Lab, Bielefeld University
Universitatsstr. 25, 33615 Bielefeld,

Germany

Abstract. In this contribution, we explore the possibilities of learning
in large-scale, multimodal processing systems operating under real-world
conditions. Using an instance of a large-scale object detection system for
complex traffic scenes, we demonstrate that there is a great deal of very
robust correlations between high-level processing results quantities, and
that such correlations can be autonomously detected and exploited to
improve performance. We formulate requirements for performing system-
level learning (online operation, scalability to high-dimensional inputs,
data mining ability, generality and simplicity) and present a suitable neu-
ral learning strategy. We apply this method to infer the identity of ob-
jects from multimodal object properties (“context”) computed within the
correlated system and demonstrate strong performance improvements as
well as significant generalization. Finally, we compare our approach to
state-of-the-art learning methods, Locally Weighted Projection Regres-
sion (LWPR) and Multilayer Perceptron (MLP), and discuss the results
in terms of the requirements for system-level learning.

1 Introduction

In contrast to many previous approaches focussing on learning close to sensory
signals [1,2], this contribution supports an alternative view, namely that learning
in large-scale environment perception systems gets more feasible and beneficial
when applied to heavily preprocessed, abstract/invariant quantites to which we
will summarily refer to as system-level quantities. We propose that this kind of
system-level learning has, by construction, a high generalization ability which
supports system performance particularly in difficult sensory conditions (high-
dimensionality, noise, ambiguity, ...).

This study is conducted based on an instance of a large-scale object detection
system in road traffic environments [3] which integrates multimodal information
(laser, video) as well as a wide variety of vision-based algorithms such as stereo,
tracking, classification, and free-area detection. The motivation for this study
arose when trying to obtain multimodal object models (in this case: car models)
for excluding obviously incorrect object detections.
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1.1 Requirements for learning strategies

For being applicable for system-level learning in a large-scale system, any learn-
ing method must fulfill several requirements:

Online regression, i.e, the ability to train and perform regression (in contrast
to binary classification) within a running system, which implies that the num-
ber of training examples is not known in advance, while avoiding catastrophic
forgetting [4] when new examples are presented to an already trained system.

Generality and simplicity, a requirement which concerns the applicability of
an algorithm to a very wide range of data. Thus, e.g., support vector machines
with problem-specific kernels such as, e.g. [5], are inapplicable. Any system-level
learning method must also be simple in the sense that it does not contain a large
number of parameters that must be tuned to problem-specific values.

Scalability. Using a simple set of system-level learning methods requires the
conversion of system-level quantities into a common representational format
(see [6]). Such a format should not be optimized for a specific kind of data, and
should give the possibility of repesenting probabilistic information. Therefore,
any system-level learning algorithm must cope with the fact that the number of
data dimensions can grow very large.

Data mining ability. A learning algorithm must be able to ignore irrelevant
and possibly noisy dimensions and to approximately identify the relevant ones,
especially in high-dimensional data.

Reusability of internal representations. Any advanced learning algorithm con-
structs internal representations of the input data, e.g. the hidden layers of a MLP
or the set of support vectors constructing the separating hyperplane of a support
vector machine. Internal representations should not be task-specific, but should
be reusable for other tasks if possible.

1.2 Neural projection-prediction as a system-level learning strategy

We present a first instance of an extensible, composite neural method able to
exploit correlations and interrelationships between system-level quantities, espe-
cially higher-order correlations not directly available to direct associative learn-
ing. This contribution focuses on the autonomous generation of internal rep-
resentations by the proposed neural projection-prediction (NPP) method. We
demonstrate the benefits and limitations of our composite method by rigorously
benchmarking it. For this purpose, we employ data in the form of system-level
quantities recorded from a large-scale real-world system dedicated to object de-
tection in challenging traffic environments. In order to realistically assess the
value of NPP as a system-level learning method, we evaluate two other learning
methods on the benchmark task: a nonlinear MLP and the LWPR [7].

1.3 Related Work

LWPR [7] is explicitly designed to be an online method for high-dimensional
data, and it avoids catastrophic forgetting by incrementally partitioning the
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input space into volumes where individual linear regression models are applied.
Here, we evaluate the performance of LWPR w.r.t. suitability for system-level
learning. We particularly intend to determine whether LWPR can deal with the
requirements of scalability and generality (sec. 1.1).

Another related model is the Radial Basis Function network (RBFN) model
(see, e.g., [4]) which requires a preprocessing step in the input data by pass-
ing it through a set of Radial Basis Functions (RBF) with predefined centers
and widths before performing linear regression. In the RBFN model, the RBF
centers and widths are fixed and empirically chosen by the user. This necessar-
ily generates a large number of problem-specific parameters, which violates the
requirements of generality, simplicity and reusability (Sec. 1.1). We therefore
consider the RBFN model, although related to NPP, to be incompatible with
our requirements.

The multilayer perceptron (MLP) model trained by a batch-mode back-
propagation algorithm (see, e.g., [8,4]) fulfills many of the requirements specified
in Sec. 1, although the online property and the reusability of internal represen-
tations are not guaranteed (since the back-propagation mechanism tunes the
hidden layer exclusively w.r.t. the learning task). We will study this model in
order to assess its potential as a system-level learning algorithm.

2 Methods

2.1 Common Representational format for system-level learning

We used population coding in our system to realize a common representational
format (see [6] for details) which allows to use learning methods fulfilling the
requirement of scalability presented in Sec. 1.1. A system-level quantity is rep-
resented by an activation on a two-dimensional surface, where the position and
amplitude of the activation code for the (possibly two-dimensional) value and
the confidence, respectively (see Fig. 1 for examples). Simple quantities (dis-
tance, height, size, ..) can be represented naturally in this way; information of
higher intrinic dimensionality must be subjected to a suitable projection, which
will be elaborated in more detail in Sec. 2.3. This way of storing information is
not optimized for storage efficiency, which leads to high-dimensional data even
though the intrinsic dimensionality of represented quantities is low.

2.2 Notation

We denote local activity in a two-dimensional population code A by zA(x, t).
A neuron at position x of population-code A is connected to another neuron at
position y of population-code B by a weight matrix denoted wAB

xy .

2.3 Neural Projection-Prediction

The technique we present consists of two steps: a self-organizing map (SOM) [9]
performing a projection of the input space on a two-dimensional internal rep-
resentation, and a neural network mapping the internal representation to a
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Fig. 1: Examples of system-level quantities from the benckmark dataset. A) The dis-
crete distribution from an object classifier is translated into a population code where
only certain locations carry information. B),C) Quasi-continuous one-dimensional mea-
surements (here: object elevation and distance) are encoded into population codes that
are extended along one axis. The uncertainty (multimodality) of measured distributions
is transferred to the resulting population code. D) Quasi-continuous two-dimensional
measurements (here: object position in camera image) are naturally encoded into a
two-dimensional population code.

population-coded output using a normalized form of logistic regression. NPP
is an online method: adaptation of the SOM and the logistic regression weights
are performed in parallel to data transmission. The weight vectors of both pro-
jection and prediction are initialized with small random values.
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Fig. 2: Description of the system.

Neural Projection-Prediction: Projection step In the projection step, the
input A consisting of a concatenation of population codes is projected onto a
two-dimensional output B using a self-organizing map (SOM, see [9]). At the
same time, the SOM weights are updated according to the conventional rule
based on input activity zA(x, t), output activity zB(y, t) and the position of the
best-matching unit, c. Projection and updating are governed by:

zB(y, t) =
∑
x

wAB
xy zA(x, t)

wAB
xy (t + 1) = wAB

xy (t) + εproj gσ
c (y)[wAB

xy (t)− zA(x, t)]

where gσ
c (y) = exp−y − c

2σ2
. (1)
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The values of εproj and σ are usually decreased over time; the precise form of
this variation can influence projection quality considerably.

Neural Projection-Prediction: Prediction step We employ a supervised
learning strategy where the supervision signal can come from annotated data or
can be generated within the system (bootstrapping). Based on activity zB(x, t)
in the internal representation B, we use logistic regression [10] for training,
minimizing the error of the prediction for C, zC(y, t), based on the teaching
signal tC(y, t). The transmission and learning rules for the prediction step read:

zC(y, t) = σ

(∑
x

wBC
xy zB(x, t)

)
wBC

xy (t + 1) = wBC
xy (t) + εpred zB(x)[zC(y, t)− tC(y, t)] (2)

where the logistic sigmoid function σ(x) ≡ 1
1+exp (µ−x) is applied point-wise,

correcting its argument by subtracting the long-time mean µ.

2.4 Baseline techniques

The following techniques serve as a baseline to demonstrate the advantages of
NPP and the possible ways to improve it.

Locally weighted projection regression Locally weighted projection regres-
sion (LWPR) is a method for learning high-dimensional function approximators
based on the superposition of multiple linear models in the input space. We
used the publicly available implementation of LWPR [7] by the authors for all
decribed experiments. Since LWPR stores a covariance matrix for each used lin-
ear model, it cannot deal with very high-dimensional data of d > 1000 due to
memory consumption.

The multilayer perceptron model The multimayer perceptron (MLP) model
[4] is a standard nonparametric regression method using gradient-based learning.
It is a rather simple model, the only real free parameters being the number and
size of hidden layers. The hidden layer may be viewed as an abstract internal
representation where it is however unclear what is being represented. For network
training, we employ the backpropagation algorithm with weight-decay and a
momentum term (see, e.g., [8]). We used the pyBrain-library [11] for all described
MLP experiments.

3 Experiments and Results

3.1 Data sets

The standard dataset consists of 30000 samples of system-level quantities recorded
in a large-scale integrated object detection system. A car is equipped with two
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front cameras and a laser in order to acquire data which is used by several pro-
cessing layers [3]. The output of these layers is converted into population-codes
(PCs) following the method described in Sec 2.1. Each sample of the standard
dataset consists of 8 population-coded quantities representing abtract, invariant
visual and spatial properties of objects detected by the system: distance, size,
image position, elevation, two measures for distance-to-road-area, retinal size
and depth (see [6]). Each PC consists of 64x64 elements, one sample therefore
has a dimensionality of 32768. For training purposes, each PC is downsampled
to a size of 16x16, making the dimensionality of one example d = 2048. The
reduced dataset contains three PC per sample: retinal XY position, retinal size
and distance. The noised dataset contains the 8 PC, plus 5 PC of uniform noise.
As explained in Sec 2.1, the effective dimensionality is lower than the size of the
PC, because some areas of the PC are not used. However, we keep the unnec-
essary dimensions to show that NPP is robust under the addition of irrelevant
dimensions (data mining ability, see Sec. 1.1).

We generate several LWPR datasets of roughly the same content but reduced
dimensionality since LWPR cannot deal with the high dimensionality of the de-
fault dataset. This is achieved by computing the coordinates (2 numbers) of the
center of gravity for each of the 8 PCs contained in a single data sample. Depend-
ing on the type of encoded quantity, the y-coordinate of the center of gravity
is irrelevant and can be omitted. The dataset LWPR-1 is the approximation
of the reduced dataset and has 4 dimensions since image position carries two-
dimensional information. Dataset LWPR-2 has dimensionality 9 approximating
the 8 PCs (in most cases the y=coordinate of the center of gravity can be dis-
regarded), and Dataset LWPR-3 has dimensionality 18, where 9 dimensions are
taken from LWPR-2 and 9 dimensions contain uniform noise.

The examples are either positive (coming from car objects) or negative (not
coming from cars). The ratio of positive to negative examples is approximately
1:10. For all training runs, we split the used dataset: the first 15000 examples
are used for training, the last 15000 examples for evaluation.

3.2 Evaluation measures

The output of the trained Neural Projection-Prediction architecture is a dis-
crete population code zC(x, t) predicting the identity of a detected object (see
Fig. 3.2). The population code is formed by two regions of activations, a1 coding
for the class ”car” and a2 for the class ”non-car”. We calculate a confidence
value C = A1 − A2 with A1,2 =

∑
a1,2

zC(x, t) for each example. A decision is
made by comparing C to a variable threshold θ. This is visualized in Fig. 3.

  

A1
A2

C = A1 −A2

class =

(
”car(positive)” C > θ

”non-car(negative)” otherwise

Fig. 3: Decision making process for performance evaluation.
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This decision can be compared to the known ”true” class of the object
given by the identity. For different values of θ, we calculate the false posi-
tive rate fpr = #(incorrect positive classifications)

#(negative examples) and the false negative rate fnr =
#(incorrect negative classifications)

#(positive examples) for the whole stream. We will assess classification
quality by fnr-fpr plots also known as receiver-operator characteristics (ROCs).

3.3 Experiments with Baseline techniques

We evaluated LWPR using the datasets LWPR-1, LWPR-2, LWPR-3. Default
LWPR parameters were used, except for an initial distance metric of 0.0625
and enabled meta learning. By changing the decision threshold θ applied to the
real-valued output of LWPR, ROCs were produced which can be seen in Fig. 4.
The figure shows that LWPR is able to solve the classification task well and
improves greatly from the first to the second experiment by adding more input
dimensions. However, it has difficulty coping with unnecessary dimensions, as
one can observe when we add 9 random input dimensions in dataset LWPR-3.
Furthermore, LWPR training failed due to memory limitations when using the
default dataset or the reduced dataset due to the number of receptive fields. It
is not suitable to work with such high dimensionalities in its present form. It
takes approximately 4 rounds of data for the LWPR to converge (one round is
one iteration over the whole dataset). It creates 170 receptive fields for LWPR-1,
790 for LWPR-2, and 730 for LWPR-3.

We trained an MLP as described in Sec. 2.4 using the standard and the
reduced dataset (see Sec. 3.1). We employ MLP networks with an input layer of
size 2560, one hidden layer of size 50 and one output neuron, using a sigmoid
nonlinearity for each neuron. We verified that the results are similar for a number
of hidden units between 50 and 100 hidden units. Training of the MLP requires 5
rounds (gradient steps) before early-stopping occurs. Training convergence was
fast in spite of the high input dimensionality, resulting in ROCs given in Fig. 4
by applying a varying threshold θ to the real-valued MLP output.
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Fig. 4: Results for LWPR and MLP algorithms

3.4 Experiments with Neural Projection-Prediction

We trained our algorithm on the standard, reduced and noised datasets, and we
limit the training to one round of data, so each example is presented once. We
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impose this constraint to our algorithm in order to evaluate its potential on
online scenarios.

Reduced Dataset In order to characterize the qualities and the flaws of our
algorithm, we evaluate the quality of the prediction depending on several pa-
rameters of the learning. We take a standard value for the learning constant of
the prediction: εpred ' 1/15000, 15000 being the number of training examples.
We verified during our experiments that the value of the learning constant of
the projection can vary between 0.1 and 0.0001 without affecting the results.
We also performed experiments with different values and decreasing functions
for the SOM radius. SOMs are usually trained with a decreasing radius, which
implies a fixed number of training samples and a converging network. As we
aim to work on real-world online problem, we verify that we obtain compara-
ble results for a fixed radius. One can observe on Fig. 5, for εproj = 0.001 and
εpred = 0.0001, that having a fixed radius does not change the results of the
prediction drastically.

Performance with a high dimensionality We now run our algorithm on
the standard dataset. Our algorithm requires a very small amount of parameter
tuning, as it performs similarly for a large span of values. We keep a constant
radius σ = 10. One can observe on Fig. 5 that the performances with the standard
dataset are better than the performances with the reduced dataset, especially in
the high false-negative rate regime.
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Fig. 5: We can observe on the left figure the results for a fixed radius and a lineary
decreasing radius (from 5.0 to 1.0), using the reduced dataset. On the right we have
the result for the standard dataset, using a fixed radius. The results for the standard
dataset are indeed better than for the reduced dataset.

We show with this experiment that the NPP complies with several require-
ments from Sec. 1.1: simplicity and scalability. For now, as the SOM projection
does not depend on the target value, we can say that the internal representations
are not task-specific, and thus reusable. The technique is less efficient than the
LWPR or the MLP, which have a task-specific internal representation. This lower
performance is the price to pay for the reusability of the internal representation.
Another reason for the lower performance is the fact that we perform only one
round of learning.
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Resistance to noise Fig. 6 shows the results of the experiments conducted
in order to study the performance of our algorithm with noisy data. We used
the noised dataset which has a dimentionality of 3328, with standard parameter
values taken from the previous section. We can observe that the noise does not
affect the NPP. As expected, the SOM algorithm is resistant to noisy dimensions.
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Fig. 6: Analysis of the resistance to noise.

4 Conclusion and key findings

Based on data obtained from a large-scale processing system, we study three
learning techniques to determine whether they fulfill the requirements described
in Sec. 1.1 related to system-level learning in large scale architectures or not.

The LWPR algorithm gives the best results regarding the quality of the
prediction. It also prevents catastrophic forgetting, and so fulfils the requirement
of online regression. However, the internal representation is task-specific, it is
unable to cope with too high dimensions or with additional noise, so it does
not meet several requirements: scalability, data mining ability, and reusability of
internal representations. Also, we observe that it performs best with a certain
amount of manual tuning (selection of input dimensions and parametrization of
distance metrics), which goes against the requirement of simplicity. LWPR is
then not suitable for our system-level learning requirements.

The MLP algorithm also performs well in terms of the quality of the predic-
tion. The internal representation (hidden layer) is not easily reusable since it is
strongly influenced by the chosen learning task. The MLP algorithm meets the
criteria of scalability, data mining and obviously generality and simplicity, since
the internal representation size is found to be uncritical. However it is not an
online algorithm and it faces known issues of catastrophic forgetting (see [8]),
and so it is unsuitable for an online real-world system, where new combinaisons
of inputs can overwrite previously learned combinaisons.

The NPP meets all the requirements described in Sec. 1.1. It is a generic
and simple method with a small amount of parameters, and usable in a plug
and play manner. It is able to handle very high dimensions (scalability), and
is not disturbed by unnecessary dimensions (data mining ability). The internal
representation does not depend on the task, only on the input space (reusability
of internal representations). Finally, it performs online regression where LWPR
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and MLP need to use the training data several times. We want to emphasize the
fact that our goal is the system-level applicability. As we have shown, we pay
the price for this in the form of reduced performance. Even so, the benefits for
the whole system can be huge, especially in real-world applications.

5 Future works

As future research topics, we propose several additional mechanisms, most no-
tably in the projection step. We want to improve the performance while retaining
the advantages we gained. We will first improve the projection in order to repre-
sent the input space as faithfully as possible. We also plan to derive a feedback
signal in order to modulate the SOM clustering depending on the quality of the
prediction.

References

1. A Gepperth, B Mersch, J Fritsch, and C Goerick. Color object recognition in real-
world scenes. In JM de Sa, editor, ICANN 2007, part II, number 4669 in Lecture
Notes in Computer Science. Springer Verlag Berlin Heidelberg New York, 2007.

2. H Wersing and E Körner. Learning optimized features for hierarchical models of
invariant object recognition. Neural Computation, 15(7), 2003.
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