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Abstract. For integrating neural networks into large systems, dynami-
cal stability and parameter settings are key issues, especially for popular
recurrent network models such as dynamic neural fields. In neural cir-
cuits, homeostatic plasticity seems to counter these problems. Here we
present a set of gradient adaptation rules that autonomously regulate
the strength of synaptic input and the parameters of the transfer func-
tion for each neuron individually. By doing this, we actively maintain
the average membrane potentials and firing rates as well as the variances
of the firing rate at specified levels. A focus of this contribution lies on
clarifying at which time scales these mechanisms should work. The bene-
fit of such self-adaptation is a significant reduction of free parameters as
well as the possibility to connect a neural field to almost arbitrary inputs
since dynamical stability is actively maintained. We consider these two
properties to be crucial since they will facilitate the construction of large
neural systems significantly.

1 Introduction

It is well known that even single neurons are complex, nonlinear dynamical sys-
tems (see, e.g., [1]). Furthermore, neurons are massively interconnected with
other neurons by (possibly recurrent) synaptic connections, with their own non-
linear behavior. To maintain dynamical stability under such circumstances, there
exist a multitude of activity control mechanisms [2,1,3], which autonomously
adapt the processing parameters of each neuron according to local rules. These
mechanisms are collectively denoted as ”homeostatic plasticity”. Popular neu-
ron models are facing similar stability problems, especially when researchers
construct large-scale neural systems [4,5,6,7]. In addition, most neuron mod-
els contain a multitude of free parameters which cannot always be related to
experimental findings.

For both reasons and based on our previous experiences with large-scale
neural systems [4], this contribution focuses on local activity control mechanisms
for a well-known network model, the dynamic neural field model [8,9,10]. As a
first step, we show how the membrane potentials (related to synaptic scaling [3])
and the firing rates (related to intrinsic plasticity [11,12]) can be autonomously
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regulated in face of variable afferent input, thereby maintaining the temporal
mean and variance of individual membrane potentials or firing rates at specified
target values. Due to the nonlinear dynamic character of the neural field model,
it is important to determine time scales such as to minimize interference between
adaptation mechanisms.

Several mechanisms of homeostatic plasticity have been previously modeled:
on the one hand, intrinsic plasticity, the adaptation of the intrinsic excitability
of a neuron’s membrane, has been modeled as an adaptation of neural trans-
fer functions in [13,14] and applied to a number of problems such as reservoir
computing [15] or self-organization of sensory representations [16]. On the other
hand, authors have modeled synaptic scaling [17], the activity-dependent modi-
fication of synaptic strengths [2].

Overall, our work differs from related work in two respects. Firstly, in ad-
dition to modeling synaptic scaling and intrinsic plasticity, we demonstrate the
operation of these mechanisms concurrently with each other and, secondly, we
present a strategy of decoupled time scales to prevent interference.

More precisely, the main difference between our work and [13,16,14] is the use
of recurrent neural networks with a dynamic state instead of input-output encod-
ing neurons. Not needing to address stability problems, these articles strongly
focus on achieving a certain output distribution for each neuron. In contrast,
we emphasize the reduction in the number of free parameters as well as the dy-
namic stability. In this respect, our work is related to [17] which also employs
the dynamic neural field model, although the focus of our work is on the effects
of activity control rather than on self-organization processes.

2 Dynamic Neural Fields

The dynamic neural field model [8] has been proposed to describe pattern forma-
tion in the visual cortex. Essentially, dynamic neural fields are a class of recurrent
neural network models that have been extensively used for modeling cognitive
phenomena like decision making [10], motor planning [9], spatial cognition [18],
eye movement preparation [19,20] and object recognition [21,22]. Basic elements
are simple dynamic-state neurons, a fixed lateral connectivity, and a (usually
sigmoid) nonlinearity.

In the neural field model described in [8], natural candidates for self-adaptation
are the strengths of afferent inputs and the transfer function parameters, which
need to be made position and time dependent for this purpose. We thus for-
mulate a generalized version of the original model suitable for local adaptation
mechanisms:

τ u̇(x, t) = −u(x, t) + α(x, t)S(x, t)

+ β

∫

w(x − x′)′f [u(x′, t)]dx′ + γσ(x, t) + h (1)

where f [u(x, t)] =
1

1 + exp(−2(u(x,t)−θ(x,t))
ν(x,t) )
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Here, the quantity u(x, t) represents the membrane potential of the field at time
t and position x, S(x, t) the afferent input, w(x−x′) the fixed lateral interaction

kernel, f [u] the nonlinearity or transfer function, and σ(x, t) the noise. τ deter-
mines the time scale of field evolution, and h is the resting potential, i.e., the
equilibrium potential in case of no input. We choose a sigmoid transfer function,
parameterized for each neuron by a threshold and a gain value θ(x, t), ν(x, t).
In addition to the original model equation [8], we introduce time and position
dependent coefficients α(x, t), θ(x, t), ν(x, t), as well as the coefficients β, γ
which will not be subject to adaption for now. The coefficients α(x, t), β and γ
respectively determine the contribution of the afferent input, the lateral recur-
rent interactions and the noise. The interaction kernel w(x−x′) is usually chosen
to be symmetric: w(x − x′) = a0Gµ=0,σon

(x − x′) − b0Gµ=0,σoff
(x − x′) − c0,

where Gµ=0,σ(x) denotes a Gaussian with mean µ and standard deviation σ, and
σon < σoff. The constants a0, b0, c0 are chosen suitably to achieve the desired level
of local excitation/inhibition(a0, b0) as well as global inhibition (c0).

3 Experimental Setup

The configuration used for simulation experiments consists of a single neural
field discretized to 128x128 neurons. Constant parameters are chosen to τ =
12, a0 = 0.3, b0 = 1.5, σon = 10, σoff = 20, β = 1, γ = 0, h = −0.15. Input
patterns stay constant for one pattern cycle consisting of 800 iteration steps. For
clearing activity from previous pattern cycles, a value of h = −20.0 is used in the
first 150 steps of a pattern cycle. Afferent input S(x, t) is additively composed
of uniform noise with amplitudes between 0.14 and 0.16 and Gaussians (random
peak values between 0.5 and 0.7, random variances between 4.0 and 6.0) that
appear, at the start of each pattern cycle, at random positions in two distinct
30x30 areas (see Fig. 1). One area always contains two Gaussians whereas an
other area contains only one. Thus, we can distinguish three activity levels in the
afferent input. Using fixed values of α(x, t) = 1.0, ν(x, t) = 0.3 and θ(x, t) = 0.5,
the mean and variance distribution resulting from this input can be seen in Fig. 1.

Fig. 1: Left: Example input stimulus. Middle,right: Temporal mean and variance of
membrane potentials u(x, t) resulting from input stimuli, without adaptation.
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4 Dynamic adaptation of membrane potential

In order to regulate the temporal mean value of the membrane potential ūλ(x, t)
to a target value ūtarget, we use a gradient adaptation rule for the input strength
α(x, t) of each neuron:

α(x, t + 1) = α(x, t) − ǫα(ūλ(x, t) − ūtarget). (2)

ūλ(x, t + 1) = (1 − λ)ūλ(x, t) + λu(x, t). (3)

Here, λ and ǫα denote the timescales at which mean calculation and adaptation
take place. Importantly, λ and ǫα have to be properly chosen. If the adaptation
is too fast, i.e. ǫα is too large, it has an immediate effect on the field potential,
but α(x, t) will vary constantly and not stabilize. If the adaptation is slow,
α(x, t) will converge slowly without oscillating. An aim of this section is to find
a suitable combination (ǫα,λ) that guarantees stable convergence of α(x, t).

(a) ūλ(x, t) (ǫα=0.0005, λ=0.01) (b) Average convergence of ūλ(x, t)

(c) α depending on ǫα (λ=1) (d) α depending on λ (ǫα=0.0005)

Fig. 2: Mean potential adaptation. (a) shows the convergence of the mean potential

ūλ(x, t). (b) shows the average convergence of ūλ(x, t) for a set of 10 experiments,
with the same parameters as in (a). Fig. (c) and (d) show the convergence of α(x, t)
depending on ǫα and λ, in region with 2 gaussian inputs.
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4.1 Experiments and results

Considering the distribution of the mean potential without adaptation (Fig. 1),
we set the target mean potential ūtarget to 0.1 and study the convergence of the
mean potential depending on ǫα and on λ.

The results in Fig. 2 show that we can successfully adapt the mean potential
using the gradient adaptation rule. If the adaptation is on a faster time scale
than the mean calculation, the input strength will oscillate, as can be observed
in Fig. 2d with λ=0.0001. Therefore, a general rule for input strength adaptation
is to set different time scales satisfying λ ≫ ǫα.

5 Dynamic adaptation of firing rates

This section describes how to adapt the parameters θ(x, t) and ν(x, t) of the
transfer function in order to control the mean and the standard deviation Σρ

f (x, t)
of each neuron’s firing rate. Mathematically, we can express a running estimate
on time scale ρ of the firing rate’s mean and standard deviation as:

f̄ρ(x, t + 1) = (1 − ρ)f̄ρ(x, t) + ρf(x, t) (4)

Σρ
f (x, t + 1) = (1 − ρ)Σρ

f (x, t) + ρ
√

(f [u(x, t)] − f̄ρ(x, t))2 (5)

For the dynamic firing rate adaptation, we adapt the threshold θ(x, t) to the
mean value of the potential:

θ(x, t + 1) = θ(x, t) − ǫθ(θ(x, t) − ūλ(x, t)) (6)

By doing so, we center the transfer function on the mean value of the potential
distribution. This is essential if we want to adapt the gain efficiently. Next, as
illustrated in Fig. 3, we adjust the gain in order to adapt Σρ

f (x, t):

ν(x, t + 1) = ν(x, t) − ǫν(Σρ
f (x, t) − Σtarget) (7)

5.1 Experiments and results

For simulations, we use the following values: Σtarget = 0.015, ρ = 0.01, ǫθ =
0.0001 and ǫν = 0.00001. As one can see in Fig.4b, the transfer function adapta-
tion is efficient for areas with strong input (2 gaussian inputs). However, for the
case of a region with a weak input (only noise), the activity may die out due to
lateral interactions (see Fig. 4a) . This can be avoided by combining the firing
rate adaptation with the mean potential adaptation (see section 6)
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Fig. 3: Mechanisms of gain adaptation. Red solid curves indicate the distribution of
membrane potential values, blue solid and dashed curves indicate the current and the
optimal transfer function. As the gain is inversely proportial to the slope of the sigmoid
function, increasing (left) or decreasing (right) the gain will both decrease or increase
the firing rate variance and adapt the transfer function (blue arrows) so that it maps
most potential values linearly.

(a) θ(x, t) (region with only noise) (b) θ(x, t) (2 gaussian inputs)

(c) ν(x, t) (region with only noise) (d) ν(x, t) (2 gaussian inputs)

Fig. 4: Transfer function adaptation. The gain and the threshold both converge and lead
to a stable system in the case of a strong input (b,d). The mean potential converge to 0
for a low input (a,c). Variance plots are obtained by averaging a set of 10 experiments.
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6 Combination of dynamic adaptation methods

In this section, it will be described how the self-adaptation of the potentials
and the firing rates is performed simultaneously. In order to avoid interferences,
attention must be given to the time scales of the adaptation mechanisms ρ and
λ, and to the adaptation constants ǫα, ǫν and ǫθ.

We require that all statistical quantities should operate on a similar time
scale (λ ≈ ρ), and that adaptation mechanisms should be significantly slower.
Threshold adaptation is coupled to input strength adaptation, then ǫα ≈ ǫθ. Gain
adaptation depends critically on centering of the threshold, therefore ǫν < ǫθ:

1/τ > 1/800 > λ ≈ ρ > ǫα ≈ ǫθ > ǫν (8)

Using target values of ūtarget=0.1, Σtarget=0.015, time constants λ=0.01 and
ρ=0.01, and adaptation coefficients ǫα=0.0005, ǫθ=0.0001, and ǫν=0.00001, one
can see in Fig. 5 that the joint adaptation is indeed successful. We do not observe
the previous problem with weak input strength anymore.

(a) θ(x, t) (region with only noise) (b) θ(x, t) (2 gaussian inputs)

(c) ν(x, t) (region with only noise) (d) ν(x, t) (2 gaussian inputs)

Fig. 5: Result with both mean potential adaptation and transfer function adaptation.
Variance plots are obtained by averaging a set of 10 experiments.
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7 Discussion

This contribution introduced several adaptation rules for actively maintaining
neurons in a desired dynamic state by suitably modifying their internal process-
ing parameters. An important outcome of our experiments is the fact that such
adaptation mechanisms must work on appropriate time scales w.r.t. each other
in order to avoid instabilities and divergences. The benefit of the work presented
here can be summarized as follows: First of all, the number of free parameters
that have to be set by a system designer is reduced. Secondly, neural fields can
now be used in a ”plug and play” manner, connecting them without having to
explicitly consider parameter settings for dynamical stability. This will facilitate
the construction of large neural systems as envisioned in [23,7]

However, there still remains a significant number of parameters that are
not subject to adaptation. Many of these parameters may be eliminated by
further adaptation mechanisms, which will be part of our future work. However,
there must remain a set of parameters describing some high-level function of a
neuron (e.g., accumulation, decision making, integration, discrimination) that
are determined by a designer. Therefore it should be clear that self-adaptation
can eliminate several but not all free parameters in a system.

8 Conclusion

As was mentioned before, there exists a number of parameters that is not con-
sidered for adaptation in this contribution. In the future, it should be investi-
gated how to extend self-adaptation mechanisms to these parameters (which are
treated as constants right now), most notably the lateral interaction strength β
and the time constant τ .
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