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Abstract
Background: Exonic splicing enhancers (ESEs) activate nearby splice sites and promote the
inclusion (vs. exclusion) of exons in which they reside, while being a binding site for SR proteins.
To study the impact of ESEs on alternative splicing it would be useful to have a possibility to detect
them in exons. Identifying SR protein-binding sites in human DNA sequences by machine learning
techniques is a formidable task, since the exon sequences are also constrained by their functional
role in coding for proteins.

Results: The choice of training examples needed for machine learning approaches is difficult since
there are only few exact locations of human ESEs described in the literature which could be
considered as positive examples. Additionally, it is unclear which sequences are suitable as negative
examples. Therefore, we developed a motif-oriented data-extraction method that extracts exon
sequences around experimentally or theoretically determined ESE patterns. Positive examples are
restricted by heuristics based on known properties of ESEs, e.g. location in the vicinity of a splice
site, whereas negative examples are taken in the same way from the middle of long exons. We
show that a suitably chosen SVM using optimized sequence kernels (e.g., combined oligo kernel)
can extract meaningful properties from these training examples. Once the classifier is trained, every
potential ESE sequence can be passed to the SVM for verification. Using SVMs with the combined
oligo kernel yields a high accuracy of about 90 percent and well interpretable parameters.

Conclusion: The motif-oriented data-extraction method seems to produce consistent training
and test data leading to good classification rates and thus allows verification of potential ESE motifs.
The best results were obtained using an SVM with the combined oligo kernel, while oligo kernels
with oligomers of a certain length could be used to extract relevant features.

Background
In eukaryotes, after transcription from DNA to messenger
RNA (mRNA), the mRNA is initially present as a precursor
messenger RNA (pre-mRNA). This pre-mRNA still com-

prises the exons and introns of the gene. At this stage it is
not known which exons will eventually be included into
the mature mRNA. This decision is taken during a process
called splicing. Then, the introns are cut out and the exons
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are reconnected in different ways to yield various mRNAs.
The signals which are necessary to define the splice sites
are located at the exon/intron boundaries and in the
introns, see Figure 1. Especially the AG- and GU-dinucle-
otides at the ends of introns are highly conserved. In some
proteins, the exons are joined in the order in which they
appear on the pre-mRNA. However, mostly this is not the
case. Different variants of a protein can occur when single
exons are skipped or if two splice sites are present in an
exon from which only one is used. This is called alterna-
tive splicing. Some of the exons are present in every
mRNA (constitutive exons), others are alternatively
spliced, and thus only present in some of the transcripts.
The resulting mRNAs are then translated into proteins
which can differ extremely in their function.

The splicing process involves a series of biochemical reac-
tions which are catalyzed by the spliceosome, a complex
of small nuclear ribonucleo-proteins (snRNPs). Addition-
ally, there are both cis-acting sequence elements as well as
trans-acting elements involved. It is known that splicing is
partly promoted by additional sequences which are
embedded in exons. Depending on whether the sequence
elements assist or inhibit the splicing process, they are
called exonic splicing enhancers or exonic splicing silenc-
ers. Exonic splicing enhancers (ESEs) are usually purine-
rich sequences that bind members of the SR protein fam-
ily (see Figure 1). SR proteins are Serine/Arginine-rich pro-
teins which can bind to the RNA and are required during
alternative splicing to select which splice site should be
used [1-3]. Their binding to these elements enhances or
prevents the steric association of the 5'-and 3'-splice sites
and consequently has an essential function in exon defi-
nition.

Exonic splicing enhancers are not easy to identify because
known ESEs consist of quite common motifs of only 6–8
bases which occur at many positions in the genome.
Therefore, not every such sequence indicates a binding
site. A well-known group of ESEs are the purine-rich

enhancers containing repeated GAR (GAG and GAA)
motifs. Several studies have shown that many sequences
can function as ESEs. The employment of functional sys-
tematic evolution of ligands by exponential enrichment
(SELEX) is an important tool for ESE identification [4-9].
The identified motifs are short (6–8 nt) and degenerate.

In [10], ab initio computational approaches for the iden-
tification of ESE motifs were employed. RESCUE-ESE
identified motifs of length six which are over-represented
in exons with non-consensus splice sites ("weak exons")
as well as in exons versus introns. In [11], a similar
approach to identify octamers over-represented in inter-
nal non-coding exons versus unspliced pseudo-exons and
the 5' untranslated regions of intronless genes was uti-
lized. Both methodologies resulted in motifs that function
as ESEs, as the authors showed experimentally in several
cases. Until now, the bioinformatics tools for detecting
exonic splicing enhancers are often based on position-
weight matrices (PWMs) which were constructed from
experimentally verified motifs of ESE sequences. Because
of the shortness of ESEs, the use of PWMs leads to a high
amount of false positive predictions. Of course, a high
amount of false positive predictions is not desirable as it
makes the classification less useful for biologists. Every
potential positive prediction needs experimental verifica-
tion. However, a high number of experiments examining
all predictions will waste time, money and material. In
order to use the predictions to guide experiments, the false
positive prediction rate has to be reduced. Examples for
pattern matching based programs are ESEfinder [12] and
SEE ESE [13].

In order to analyze alternative splicing it is necessary to
have an accurate detection method for ESEs. Loss or dis-
ruption of ESEs can result in a changed transcript, poten-
tially even be responsible for diseases [2].

Here, we report on a new approach using support vector
machines (SVMs, [14-16]) with special sequence based

Recognition signals and proteins for splicingFigure 1
Recognition signals and proteins for splicing. The consensus sequences which occur in most of the eukaryotes are 
shown. Y = pyrimidine, R = purine, N = any nucleotide.
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kernels to perform the classification of exonic splicing
enhancer sequences and our own strategy for the genera-
tion of the data sets for training and testing the classifiers.

Results and discussion
Design of positive and negative data sets
A problem for detecting ESEs is the selection of suitable
sequences for training and testing the SVMs. There are
only few exact locations and motifs of ESEs described in
the literature. Therefore, we tested two different data gen-
eration methods that are presented below.

Neutralized data
The idea behind the data set was obtained from [17]. The
data set contained 1000 randomly chosen protein-coding
exons with length ranging from 100 to 300 bases from the
Vega database [18], which we assume to contain exonic
splicing enhancers. From these exons, a set of 1000 nega-
tive sequences was created using a mechanism called neu-
tralization [17]. The negative training sequences were
generated randomly, but still coded for the same amino
acid sequence and maintained the overall composition of
the original exons. That is, the codon usage should be pre-
served as well as the frequencies of dinucleotide occur-
rences. According to the authors, using this training data
resulted in features which performed some function inde-
pendent of the protein-coding function of exons and can
thus be used to discriminate between the original and the
neutralized data set. 200 cycles of neutralization were
used leading to a mean difference of 73% between the
exons and the neutralized counterparts. As described in
[17], we examined the dinucleotide composition before
and after neutralization and found the frequencies
changed only minimally. For a more detailed description
of the neutralization procedure see the Methods section or
the original literature [17].

Motif-oriented data
For generating a second data set, we developed a motif-
oriented data-extraction method. Sequences were
extracted locally around experimentally or theoretically
determined ESE patterns, where we used the 238 hexam-
ers identified by RESCUE-ESE [10]. We assumed that the
sequence surrounding an ESE pattern can help to detect
them in exons. This is reasonable because of the fact that
ESEs are located in the vicinity of other binding sites for
splicing proteins or ESEs itself as well as in the vicinity of
splice sites [19,20]. As previously mentioned, the ESE pat-
terns are quite short and not every such sequence indicates
a binding site. Therefore, positive examples were restricted
by heuristics based on known properties of ESEs:

• Location in the vicinity of splice sites [19,20]

• Presence in an exon with a non-consensus splice site
(''weak exon'') [3,10]

• Location in a single-stranded region [21]

In summary, these criteria led to consistent positive exam-
ples, from which local features could be extracted. We
obtained 1835 sequences which met the above-men-
tioned criteria and could thus be used as positive training
examples. An advantage of this method is that the classifi-
cation problem is simplified by the introduction of bio-
logical a priori knowledge. A disadvantage is that the new
method can only be used for ESEs with known consensus
sequences.

The negative examples were extracted from longer exons
using the same extraction method as used for positive
examples, positioning the "ESE motif" in the center and
extracting the surrounding sequence. An advantage is that
these sequences have the same background distribution of
the four bases as in the positive examples. Due to the fact
that ESEs are only active in the vicinity of the splice sites,
ESE motifs in the middle of long exons should not have
any ESE-activity and can be used as negative examples.
Additionally, we used only ESE motifs which are located
in double-stranded regions. These were identifiable based
on the fact that small energy values [see Methods] label a
substring as double stranded (EFa,b < 0.3). This increased
the possibility of reliable negative examples. A large set of
sequences met these criteria and as such we undersampled
the negative class by randomly selecting 3000 sequences.

SVM scenario
An L1-norm soft margin support vector machine (SVM) was
applied using special sequence based kernels, the com-
bined oligo kernel [22] and the locality improved kernel
[15,23]. The combined oligo kernel counts matching oli-
gomers up to a certain length with an adjustable degree of
positional uncertainty. This uncertainty is realized using
the smoothing parameters σ1,...,σκ of the Gaussian in the
combined oligo kernel function [see Methods]. The local-
ity improved kernel counts matching nucleotides and con-
siders local correlations within local windows of length 2l
+ 1 [see Methods]. For comparison, a Markov chain model
was implemented.

Results for neutralized data
The data for training and testing the SVM classifier con-
sisted of 1000 positive examples, the exons, and 1000
negative examples, their neutralized counterparts. We per-
formed 50 trials with different random partitions of the
data into training and test sets.

Adaptation of the parameters of the SVM kernel
In the training phase the parameters of the used kernel
had to be adapted. In this case, the oligo kernel [see Meth-
ods] was employed. A grid search was used in a 5-fold
cross-validation scenario for determining the optimal val-
ues of the smoothing parameter σ ∈ {i | 1 ≤ i ≤ 10} of the
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oligo kernel as well as the regularization parameter C ∈
{0.002·i | 1 ≤ i ≤ 10} of the SVM.

Classification performance
Training an SVM classifier using the oligo kernel resulted
in an accuracy of about 95%. This was quite high and
unexpected. To analyze the classification performance fur-
ther, a number of different data sets were used for testing.
These consisted of coding exons which were not in the
training set, non-coding exons, introns and intergenic
regions. From each of these sets, the negative examples
were either generated using the neutralization procedure
(even if the sequences were not protein-coding) or a ran-
domization process. Randomization generates a random
counterpart of the original sequence while maintaining
mononucleotide and dinucleotide composition [17]. We
expected that for the coding exons as well as for the non-
coding exons the classification rates would be good for
both types of negative examples. This would have shown
that the classifier had extracted exon-specific signals from
the original training data from which some were general
to both coding and non-coding exons. In contrast, for
introns and intergenic regions, we expected that the accu-
racy would be poor due to the fact that these sequences do
not contain exon-specific signals. Using the new data sets
as test data for the trained classifier, we obtained accura-
cies as shown in Table 1. The classification performance
for the sets with randomized negative examples were
poor, approximately at chance level. In contrast, the per-
formance for the neutralized negative examples was good
for all additional data sets mentioned above. This sug-
gested that the classifier learns neutralization-specific fea-
tures from the data, but not exon-specific features. Thus, it
seemed as if the neutralization procedure produced arti-
facts which could be exploited by the classifier. We can
conclude this because the classification performance for
introns and intergenic regions should have been poor as
well since none of the underlying features contained in
exons occur in these sequences. Therefore, at least for
exons which were not in the original data set the classifier
should have been able to distinguish between them and
the randomized counterparts.

Results for motif-oriented data
Since the results with the neutralized negative examples
were not very promising, we developed the motif-oriented
data-extraction scheme as described before. For the exact
mechanism of generating the data sets, please refer to the
Methods section. The data for training and testing the
SVM classifier consisted of 1835 positive examples and
3000 negative examples. We performed 50 trials with dif-
ferent random partitions of the data into training and test
sets.

Adaptation of the parameters of the SVM kernels
In the training phase the parameters of the kernels had to
be adapted to the given task of classifying ESEs. For the
adaptation of the combined oligo kernel, we used the
recently proposed gradient-based optimization of the ker-
nel-target alignment [24] in a 5-fold cross-validation sce-
nario for the parameters σ1,..., σκ. In our experiments, we
tested several values of κ, and obtained the best results
with κ = 8. Small oligomers of length one and two could
be omitted. This resulted in an equal classification rate
while the computational time was significantly reduced.
Therefore, we adapted σ3,...,σ8. The regularization param-
eter C of the SVM was adapted using one-dimensional
grid-search. We considered grid points {0.1·i | 1 ≤ i ≤ 50}.
For the locality improved kernel, a three-dimensional
grid-search and 5-fold cross-validation was used for the
three parameters C (regularization parameter of the SVM),
l and d. We considered C ∈ {0.002·i | 1 ≤ i ≤ 10} and l, d
∈ {i | 1 ≤ i ≤ 6}.

For the Markov chain model, the order n and the value of
the pseudocount cpseudo had to be adapted. We used grid-
search over the values cpseudo ∈ {0.2·i | 1 ≤ i ≤ 10} and n ∈
{i | 0 ≤ i ≤ 5} in a five-fold cross-validation scenario.

The final values for the smoothing parameters σ3,...,σ8 of
the combined oligo kernel and the regularization param-
eter C of the SVM are given in Table 2. The smoothing
parameters show that the positional uncertainty increases
with oligomer length. An exception is the parameter σ4
which is very small and thus, on the level of tetramers, the
optimized kernels used Gaussians that were narrow peaks

Table 1: Results of tests for neutralization procedure

randomized negatives neutralized negatives

protein coding exons not in training set 53.3% 95.8%
non-coding exons 51.11% 89.58%

introns 53.72% 83.96%
intergenic regions 52.06% 87.27%

This table gives the accuracies for the classifications with the external test sets. As "positive" examples, protein coding exons not in the training set, 
non-coding exons, introns and intergenic regions are used. As negative examples, both randomized counterparts and neutralized counterparts to 
each of the positive sets are used.
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and virtually just counted exact matches. However, there
was a considerable increase in σi for i ≥ 5. On the level of
pentamers and longer fragments, matching subsequences
could shift by several nucleotides and still contribute to
the similarity of two sequences. Note that a σi-value of 2.5
implies that a subsequence shifted by three nucleotides
still has 70 percent of the contribution of an exact match
in the kernel function (2). Table 3 shows the statistics of
the final hyperparameters for the locality improved kernel
and the Markov chain model. The order of the Markov
chain was about two. One reason for the low order is the
limited amount of training data which does not allow for
estimation of too many model parameters.

Identification of relevant features for classification
To shed light on relevant features which were used by the
SVM classifier, visualization techniques as described in
[22] were employed [see Methods]. For this purpose,
SVMs with oligo kernels using oligomers of length three,
four, five and six were employed with the SVMs. These
kernels resulted in an inferior classification rate while pro-
viding well-interpretable parameters.

In order to extract the most important oligomers for the
kernel-based ESE prediction, the oligomer-specific weight
functions of the discriminant were calculated. The ten
most important K-mers, K = {3,4,5,6}, were identified
and displayed in a bar graph in Figure 2. The height of
each bar correlates to the average norm of the correspond-
ing K-mer weight function and was scaled to yield an unit
maximum. For the oligomers shown in Figure 2, one can
identify a group of motifs which is most prominent. These

are the motifs which occur in the purine-rich enhancers,
as for example GAGGAG or GAAGAA. These motifs are
represented by several of the important oligomers shown
in Figure 2.

Figure 3 exhibits the positions in the sequences at which
relevant features are located. High positive (negative) val-
ues correspond to relevant features for discriminating pos-
itive (negative) examples. One can see that oligomers that
were important for the classification were often located in
the middle of the sequences. This seems to be consistent
as the exonic splicing enhancers are, by construction,
always located in the middle of the training data [see
Methods] and these oligomers are contained in a large
group of ESEs known as purine-rich enhancers containing
repeated GAR (GAA or GAG) trinucleotides. Additionally,
it can be inferred that oligomers which were important for
the classification of positive examples (red in Figure 3) are
mostly composed of purines but with a higher amount of
adenine. In the negative examples (blue in Figure 3) this
is inverted and guanine was more frequently present. This
correlates to the fact that the most frequent middle-motifs
in negative examples were GGAGGA or GAGGAG. In pos-
itive examples GAAGAA or AAGAAG were most frequent.
To check whether the classifier simply did not recognize
these differences, we examined the classification perform-
ance using only the frequencies of the hexamers in the
middle of the sequence [see Methods]. Using only this
information we obtained a classification rate of 66.8%
showing that other features must play an important role
for classification as well.

Classification performance
The classification performances of the different methods
are shown in Table 4. The table gives the mean values as
well as 25, 50, and 75 percent quantiles over the 50 parti-
tions of the classification rate on the test set (accuracy),
specificity, sensitivity, and Matthews correlation coeffi-
cient [25]. Specificity is defined by TN/(TN + FP), sensitiv-
ity by TP/(TP + FN), and Matthews correlation coefficient
by

where TP, TN, FP, and FN denote the true positive, true
negative, false positive and false negative rates, respec-
tively. For clarification, the notation "true negative"
denotes the fraction of negative examples that are classi-
fied as negatives, whereas "false negative" indicates the
fraction of positive examples that are incorrectly classified
as negatives. Using SVMs with the combined oligo kernel,
the best classification rates could be achieved. The accu-
racy of the SVM with optimized combined oligo kernel
was significantly better than the accuracy of the SVM with

TP TN FP FN
TP FP TP FN TN FP TN FN

× − ×
+ + + +( )( )( )( )

Table 2: The adapted parameters for the combined oligo kernel

σ3 σ4 σ5 σ6 σ7 σ8 C

mean 6.61 0.39 15.15 547.93 914.27 841.61 2.8
25% quantile 5.91 0.32 5.19 119.11 914.27 914.27 2.3

median 6.39 0.43 18.27 808.02 914.27 914.27 2.5
75% quantile 7.18 0.43 20.31 914.27 914.27 914.27 3.0

This table shows the adapted σi for the combined oligo kernel.

Table 3: Final hyperparameter configurations for locality 
improved kernel and Markov chain model

locality improved Markov chain model
C l d n cpseudo

mean 0.01 1.54 4.54 2.3 0.33
25% quantile 0.002 1 3 2.0 0.2
median 0.002 2 4 2.0 0.2
75% quantile 0.02 2 6 2.75 0.4

The Results for the Final Hyperparameter Configurations over the 50 
Partitions for the Locality Improved Kernel and the Markov Chain 
Model.
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locality improved kernel (paired Wilcoxon rank sum test,
p < 0.001) as well as the accuracy of the Markov chain
model (paired Wilcoxon rank sum test, p < 0.001). The
SVM with combined oligo kernel achieved a classification
rate of 90.74%, the SVM with locality improved kernel
achieved a classification rate of 70% and the Markov
model achieved a classification rate of 68.42%. We did
not test the SVM classifiers using external test data,
because they were only trained on exonic data.

Due to this it would not have made sense to test with
intronic or intergenic data sets. In contrast, for the neutral-
ized data the testing with external data sets was necessary,
because the idea behind the data is that a classifier can
extract exon-specific features. This needs to be tested using
external data such as, for example, introns or intergenic
regions.

In Figure 4, the receiver operating characteristics (ROCs)
of the classifiers are shown. For the SVMs, the curves were

obtained by simply varying the threshold parameter b
[26]. For the Markov chain model, a threshold parameter
b was introduced and adjusted, that is, a sequence was

classified based on the sign of ln  (s) - ln  (s) +
b. Each curve in Figure 4 corresponds to the median of the
50 trials (similar to the attainment surfaces described in
[27]). The superior performance of the SVM with com-
bined oligo kernel was also supported by the receiver
operating characteristics in Figure 4, while the Markov
chain model showed the worst performance. The SVM
with 6-mer oligo kernel performed only slightly worse
than the SVM with combined oligo kernel indicating that
the hexamers are important for this classification prob-
lem.

Consistency of results
As the ESE pattern in the middle of the motif-oriented
data is in the vicinity of the splice site, the intronic part

P M+
P M−

Oligomer rankingFigure 2
Oligomer ranking. The ten most important oligomers for discrimination based on trimers, tetramers, pentamers and hex-
amers are shown. The heights of the bars correlate to the average norm of the corresponding K-mer weight function and was 
scaled to yield an unit maximum.
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Image matrix of discriminative weight functionsFigure 3
Image matrix of discriminative weight functions. The image was derived from the trained classifiers based on the 
trimer, tetramer, pentamer or hexamer kernel. Each of the lines shows the values of one specific weight function obtained 
from an average over 50 runs. Each of the 200 columns corresponds to a certain sequence position. By construction, the 
exonic splicing enhancer motif starts at position 100. For noise reduction all matrix elements below 0.25 have been zeroed.
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can be suspected to be the main contributor to the classi-
fication rate. However, on average, the middle of the
motif-oriented data, i.e., the ESE patterns in these positive
examples, has a distance of 40 bp to the splice site. Thus,
the larger part of the examples is exonic. Additionally, the
fraction of examples that is intronic differs between the
various training examples and is thus no fact the classifier
can rely on. Furthermore, the analysis of the image matri-
ces (Figure 3) confirms the importance of the middle
motifs as they are indicated there as important for classifi-
cation. In order to support this interpretation, an experi-
ment was conducted where the position of negative
examples to the vicinity of splice sites (as it was the case
for positive examples). Training an SVM with these data
resulted in classification rates of about 80% which dem-
onstrates that the classifier uses more than exon/intron
distinctions for its decision.

In order to investigate the influence of the central motif
relative to its surround on classification performance,
another set of training examples was extracted in order to
train an SVM. In these sets of positive and negative exam-
ples, any of the 4096 possible hexamers was accepted as a
middle motif for a positive or negative example. Predicta-
bly, the classification rate dropped by 6% although this
was not as strong a drop as might be expected. One reason
is conceivable: only a subset of all 4096 possible hexamers
actually occurs in the training data since the number of
training examples had to restricted due to the unfavorable
scaling behavior of SVMs w.r.t. the number of training
examples. If the classifier is to learn a reliable decision
function, each middle motif should occur not only once
but several times both in the positive and negative train-
ing examples. It is therefore easy to see that the amount of
needed training data grows strongly with the number of
used middle motifs. The number of training examples that
could be used (due to the restrictions of the SVM) must be

considered to be far too small in the case of 4096 middle
motifs. If all possible training examples obtained using
the 4096 possible hexamers as middle motifs can be used,
we expect a much stronger drop in performance.

Comparison with ESEfinder
In order to compare our approach to a current state of the
art in ESE detection, we choose ESEfinder [12] as a refer-
ence. We used ESEfinder on all positive and negative
examples that were taken to train and test our SVM classi-
fier. We counted only recognized motifs in the middle of
sequences in this procedure, as we placed the true motif in
the middle of the test sequences. Any motif in the vicinity
of the potential ESE in the middle of the sequence can be
the middle of another sequence due to our selection
method. Of course, because of the fact that ESEfinder is
based on position weight matrices (PWMs) it is hard for
the classifier to distinguish between positive and negative
examples. As expected, ESEfinder misclassified many of
the sequence motifs and found a considerable number of
"ESEs" in the negative examples. We only obtained an
overall classification performance of 44% using ESE-
finder. As a consequence, we were interested in observing
how well ESEfinder performs when classifying only the
positive examples. We obtained a true positive rate of
39%. This might be due to the fact that our middle-motifs
were hexamers determined by RESCUE-ESE [10] from
which not all were represented by the PWMs used in ESE-
finder. The low true positive rate might have two explana-
tions, either ESEfinder might need an update of the
matrices or not all hexamers identified by RESCUE-ESE
might be ESEs.

General discussion
The best-case scenario for the proposed SVM approach
would be the exclusive usage of biologically verified train-
ing examples. For the required number of training exam-

Table 4: Classification results for motif-oriented data using different kernels

accuracy specificity sensitivity correlation

SVM, combined oligo kernel 90.74% 96.04% 82.09% 78.93%
25% quantile 90.45% 95.4% 81.16% 78.42%

median 90.82% 96.04% 82.09% 79.23%
75% quantile 91.22% 96.62% 83.25% 79.93%

SVM, locality improved kernel 70.00% 92.45% 33.36% 32.43%
25% quantile 69.16% 89.06% 24.45% 30.73%

median 69.88% 91.43% 38.56% 32.33%
75% quantile 70.93% 96.49% 41.37% 34.49%

Markov chain model 68.42% 79.26% 50.71% 31.44%
25% quantile 67.98% 76.17% 50.95% 30.66%

median 68.29% 77.61% 53.7% 31.67%
75% quantile 68.89% 80.57% 55.02% 32.64%

The mean values, 25 percent quantile, median and 75 percent quantile of the accuracy, specificity, sensitivity and Matthews correlation over 50 trials 
are given.
Page 8 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:369 http://www.biomedcentral.com/1471-2105/9/369
ples, this is impractical and is likely to remain impractical
in the near future. We have shown that, using unverified
training data, a meaningful decision function can be
learned. Furthermore, arguments for the correlation of
this decision function to ESE activity were presented.
Based on the experiments described in this paper, we see
the value of our method in its fundamental suitability for
this classification problem and its ability to incorporate
expert knowledge into the training data generation proc-
ess. This can be done by choosing appropriate biologically
verified heuristics for selecting training data. As a conse-
quence, not every positive example will correspond to a
"true" ESE (the inverse of course holds for the negative
examples). However, by virtue of the used heuristics a sig-
nificant over-representation of ESEs in the positive train-
ing examples as well as a corresponding under-
representation in the negative training examples is reason-
able to assume. Therefore, we do not expect the SVM to
perform perfectly but to have a classification rate signifi-

cantly above chance. Just as other approaches [12], the
SVM will produce incorrect predictions, although we are
confident that new insights into the splicing process can
be used in a straightforward way to improve the already
favorable results still further.

Conclusion
We successfully trained and used SVMs with special
sequence based kernels for the detection of exonic splicing
enhancers. The main problem was the choice of training
examples due to the small amount of annotated exonic
splicing enhancers in the literature. As we did not obtain
good results using our first approach, the neutralized data,
we developed a new method for choosing training and
test examples. This includes extracting motifs from the
exons as well as filter them out according to heuristics
based on known properties of ESEs. Negative examples
were extracted from the middle of longer exons, where
presumably no ESEs are located in order to have a set of

Receiver operating characteristics (ROC) for the classifiersFigure 4
Receiver operating characteristics (ROC) for the classifiers. Median ROC curves of the classifiers based on 50 trails 
are shown.
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reliable negative examples. Initial tests showed that these
sequences were useful for training an SVM classifier, lead-
ing to good results. From the different tested kernels, the
best results were obtained using the combined oligo ker-
nel with 90.74% accuracy, a specificity of 96.04% and a
sensitivity of 82.09%. From a machine-learning point of
view, an SVM is a linear classifier in a feature space and the
quality of the SVM is to nearly 100 percent based on the
used kernel function realizing a scalar product or similar-
ity measure in that feature space [28]. Thus, for obtaining
such favorable results, an appropriate kernel in the form
of the combined oligo kernel was a necessary prerequisite
for successful classification. As can be seen from the
results with locality-improved kernel, using another ker-
nel leads to inferior results. To check the benefit from
using SVMs we applied a Markov model to the data which
resulted in a significantly lower classification rate
(68.42% accuracy). The parameters of the oligo kernel
were well interpretable and gave information that longer
oligomers can shift in the sequence by several bases. Addi-
tionally, the oligo kernels can be visualized, presenting
important oligomers for ESE classification. We showed
that our SVM approach compares favorably to a well-
known state of the art method (ESEfinder).

In the future, we would like to create a web-based version
of the program in order to make it usable for the research
community. Additionally, it may be useful to integrate the
enhancer prediction into a splice site prediction program,
as it was already done for Arabidopsis thaliana in [29].

Methods
In this section, oligo kernels for the analysis of biological
sequence data are described. Furthermore, the locality
improved kernel which we considered for comparison is
described and Markov chain models are introduced as an
alternative classification method. Additionally, the meth-
ods for choosing the training and test data are presented.

Classification with SVMs
We consider L1-norm soft margin support vector machines
(SVMs) for binary classification [14-16]. Let (xi, yi), 1 ≤ i ≤
l, be consistent training examples, where yi ∈ {-1, 1} is the
label associated with input pattern xi ∈ X. The main idea
of SVMs is to map the input patterns to a feature space F
and to separate the transformed data linearly in F. The
transformation Φ : X → F is implicitly done by a kernel k
: X × X → �, which computes a scalar (inner) product in
the feature space efficiently, that is, k(xi, xj) = �Φ(xi), Φ(xj)�.

Oligo Kernels

For oligo kernels [22,24,30], the feature space can be
described using oligo functions. These code for occurrences
of oligomers in sequences with an adjustable degree of
positional uncertainty. In existing methods, they provide

either position-dependent [31] or completely position-
independent representations [32]. For an alphabet  and

a sequence s, which contains K-mer ω ∈  at positions

, the oligo function is given by

for t ∈ �. The smoothing parameter σ adjusts the width of
the Gaussians centered on the observed oligomer posi-
tions and defines the degree of position-dependency of
the function-based feature space representation. While

small values for σ imply peaky functions, large values
imply flatter functions. For a sequence s the occurrences of

all K-mers contained in  = {ω1, ω2,...,ωm} can be rep-

resented by a vector of m oligo functions. This yields the
final feature space representation

 of that sequence. A kernel

function is build to compute the dot product in the fea-
ture space efficiently, in order to make it suitable for learn-

ing. The inner product of two sequence representations Φi

and Φj, corresponding to the oligo kernel k(si, sj), can be

defined as

writing Φi for . In order to improve comparability

between sequences of different lengths, we compute the
normalized oligo kernel

From the formula for the oligo kernel, the function of the
parameter σ becomes clear, see also Figure 5. For σ → 0
only oligomers which occur at the same positions in both
sequences contribute to the sum. In general, it is not
appropriate to represent oligomer occurrences without
positional uncertainty. This would mean zero similarity
between two sequences if no K-mer appears at exactly the
same position in both sequences. For σ → ∞ position-
dependency completely disappears. In this case all oli-
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gomers which occur in both sequences contribute equally
to the sum, regardless of their distance and the oligo ker-
nel becomes identical to the spectrum kernel [32].

Combined Oligo Kernel
Meinicke et al. already showed that it is beneficial to
employ combinations of oligo kernels that consider oli-
gomers of different lengths [22]. The κ-combined oligo ker-
nel

was introduced, where the subscript i indicates that the

normalized oligo kernel  is defined on the oligomers of

length i. The level of position-dependency can be control-

led for each oligomer length individually using κ parame-

ters σ1,..., σκ.

Visualization of Oligo Kernels
The oligo kernel can easily be visualized using the weight
vector as a vector-values function arising from a linear
combination of the feature space representation. With the
learned parameters αi we can construct the vector-valued
weight function of the discriminant as

with  as in equation (1). This is a curve in the m-

dimensional space of oligomers. For each of the m com-
ponents we have a linear combination of the oligo func-

tions where the weights αi determine the contribution

from each of the n training sequences. Due to the fact that

the feature space vector can be represented as a vector of
functions, all discriminative weight functions wi may be

discretized and stored in a matrix which may be visualized
as a bitmap image using color. Here, we used discrete

sequence positions t ∈ {0,...,�}, with � = sequence-length
-K, resulting in an m × � matrix

W = [w(t1), w(t2),...,w(tl)]. (6)

when m is the number of oligomers. For noise reduction
all values between 0.25 and -0.25 were set to zero and
rows which were totally zero were excluded.

In order to reduce the complexity of the interpretation,
the analysis can be restricted to the most important oli-
gomers. Therefore, the component weight functions of
w(t) = [w1(t), w2(t),...,wm(t)]T can be ranked according to
their L2-norm

The norm was approximated using the Euclidean norm of
discretized oligo functions. Higher norms indicate a more
important role in discrimination and the selection of cor-
responding weight functions helps to focus on important
oligomers.

Locality improved kernel
For comparison, we consider the locality improved kernel
[15,23] which counts matching nucleotides and considers
local correlations within windows of length 2l + 1. For
two sequences si, sj of length L the locality improved ker-
nel is given by
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Effect of the smoothing parameterFigure 5
Effect of the smoothing parameter. Example of two sequences si and sj and the corresponding oligo functions for ω = 
TAG for small (left) and large (right) smoothing parameter σ3. On the left-hand side, it can be seen that the larger σ3 results in 
Gaussians that are still overlapping although the motif TAG is shifted in the two sequences. On the right-hand side, the shifted 
TAG motifs do not increase the kernel function due to the strongly peaked Gaussian.
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Here, matcht (si, sj) = 1, if si and sj have the same nucle-
otide at position t and zero otherwise. The weights vt give
us the possibility to emphasize regions of the window
which are of special importance. In our experiments they
are fixed to vt = 0.5 - 0.4|l - t|/l. The hyperparameter d
determines the order to which local correlations are con-
sidered. The locality improved kernel can be considered as
a special form of a polynomial kernel, where only a
weighted subset of monomers is considered [15].

Markov chain model

As a baseline classifier, we look at simple Markov models
of the positive and negative sequences, see [33] for an
introduction. We apply inhomogeneous Markov chains, also
referred to as weight array matrix models. Given a Markov
chain M of order n over an alphabet  for strings of a
fixed length l (cf. [[33], Section 4.4.2] and [34]), the like-
lihood of a sequence is given by

The conditional probabilities  are the

 parameters of the model and

are estimated from the frequencies in the training data
plus a pseudocount cpseudo (cf. [[33], Section 4.3.1]). Let M+

and M- be the Markov chain models built from the posi-
tive and negative examples in the training data, respec-
tively. A sequence s is classified based on the sign of

ln  (s) - ln  (s). Our simple Markov chain model
has only two hyperparameters, its order n and the value of
the pseudocount cpseudo. The latter serves as a regulariza-

tion parameter.

Motif-oriented classification
The classification performance considering only the fre-
quencies of the motifs in the middle of the sequences was
calculated using the same data partitionings in training
and test data as in the classification using SVM or Markov
model. For each partition of the data the frequencies of
the different motifs in the middle of the training

sequences were counted. Now, for each test sequence, we
extracted the middle-motif and decided whether the test
sequence was positive or negative with the previously
determined motif numbers in the training set. Therefore,
if a certain motif is overrepresented in the positive train-
ing examples the test sequence is classified as being posi-
tive, otherwise it is classified negative.

Data sets
Neutralization
Neutralization is a strategy to generate transformed
sequences from exons which still code for the same amino
acid sequence and maintain the overall composition of
the original exons. Three criteria have to be met while the
exons are transformed. Firstly, the neutralized sequence
codes for the same protein. Secondly, a codon should not
be used more frequently to represent a particular amino
acid than in the original set. Thirdly, the frequencies of the
dinucleotide occurrence should be retained. For the
detailed algorithm of the neutralization method, we refer
to the original literature [17].

Motif-oriented data-extraction method
The basic problem with ESE classification is the small
amount of verified data from the literature or databases
which can be used for training and testing machine learn-
ing approaches. Because the motifs of the ESEs are known,
the positive examples can be extracted from the exons but
not every motif found in this way is a real ESE. This leads
to unreliable positive examples. We developed a new
data-extraction scheme (see Figure 6) where the sequence
located around a potential ESE is extracted. A surrounding
of 200 bases was considered as sufficient.

To deal with the drawback of unreliable positive exam-
ples, each extracted sequence has to meet several criteria
which increase the possibility of a motif being an ESE.
First of all, only potential ESE motifs in the vicinity of the
splice sites are used because it is stated in the literature
that ESE sequences are not active far away from the splice
sites [19,20]. Therefore, only motifs with distances of less
than 100 nucleotides from the splice sites are considered
as potential ESE sequences. Furthermore, as claimed in
[3,10], ESE motifs can compensate for the presence of
"weak" (non-consensus) 3' or 5' splice sites of exons.
These exons are under a much higher selective pressure to
retain ESE motifs and therefore they often contain a
higher amount of exonic splicing enhancers. To include
this fact into our training data, we generated position-spe-
cific weight matrices (PWMs) for both the 3' splice site
and the 5' splice site. We extracted all annotated splice
sites from the Vega database [18]. For the 3' splice site, we
took 20 bases of the intron and 3 bases of the exon to take
the pyrimidine-rich sequence into account. For the 5'
splice site, 3 bases of the exon and 6 bases of the intron
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were considered as splice site. These differences result
from the known design of the splice sites, including the
pyrimidine-rich sequence into the 3' splice site (see Figure
1). Creating the PWMs, we obtained a 4 × 23-matrix for
the 3'splice site and a 4 × 9-matrix for the 5' splice site,
which are shown in Figure 7.

Using these PWMs, a score was assigned to every splice
site. The score assigned by a PWM to a substring is defined

as , where pij is the probability of observing

symbol i at position j of the motif and bi is the probability
bi of observing that symbol in the background model. For

the background model, we considered all bases as equally

represented. Those splice sites with a score among the
lower 25% of scores were classified as a weak splice site
and those among the upper 25% were classified as strong.
Then, only motifs in the vicinity of "weak" exons were
considered as being reliable training examples.

Third, RNA binding proteins recognize RNA in a
sequence-specific manner where the secondary structure
of the RNA plays a role [21]. Binding sites as ESE
sequences are often located in single stranded regions. A
motif in a double-stranded region has been shown exper-
imentally to have a strong negative correlation with the
binding affinity [35] or even abolishes protein-binding
[36,37]. Therefore, we calculated energy parameters to
characterize the single-strandedness of a substring in an

log
pij
bij

N ⎛
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⎞
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Schematic presentation of the data-extraction methodFigure 6
Schematic presentation of the data-extraction method. Sequences are extracted locally around potential ESE motifs 
and are then declined or accepted as positive examples depending on whether they fulfill certain criteria. First of all, a potential 
positive example has to be close to a splice site. Secondly, the exon from which the positive example is extracted has to be a 
weak exon and thirdly, the region in which the positive example is located has to be single-stranded. Each training sequence has 
a length of 200 bases.
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Position weight matrix for the 3' and the 5' splice site. The rows represent the bases A, C, G and T. Each column 
stands for one sequence position in the consensus sequence. Each entry represents the normalized number of occurrences of 
the base at that position. Each row is added to 1. For the 3' splice site a surrounding of 23 bases and for the 5' splice site a sur-
rounding of 9 bases is considered important.

b)
0.29 0.50 0.12 0.01 0.01 0.41 0.47 0.30 0.32
0.31 0.15 0.24 0.47 0.02 0.03 0.15 0.07 0.12
0.21 0.16 0.47 0.51 0.02 0.50 0.20 0.55 0.28
0.19 0.19 0.17 0.01 0.95 0.06 0.18 0.08 0.28

A
C
G
T

exonintron

a)
0.24 0.23 0.22 0.21 0.20 0.20 0.20 0.19 0.19 0.18 0.18 0.18 0.20 0.16 0.26 0.08 0.18 0.06 0.95 0.01 0.17 0.19 0.19
0.26 0.27 0.28 0.28 0.28 0.28 0.27 0.28 0.28 0.27 0.28 0.28 0.29 0.33 0.29 0.53 0.21 0.50 0.02 0.48 0.45 0.16 0.22
0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.17 0.18 0.18 0.19 0.18 0.15 0.12 0.07 0.15 0.03 0.02 0.50 0.26 0.16 0.30
0.30 0.31 0.31 0.32 0.33 0.33 0.34 0.34 0.36 0.37 0.36 0.35 0.33 0.36 0.33 0.32 0.46 0.41 0.01 0.01 0.12 0.49 0.29

A
C
G
T

exonintron
Page 13 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:369 http://www.biomedcentral.com/1471-2105/9/369
RNA sequence. For characterization of single-stranded
regions, we used a parameter EFa,b described in [21] giving
the expected fraction of bases in the substring from posi-
tion a to position b that do not form base pairs. EFa,b is cal-
culated as

with L being the length of the RNA sequence and pij giving
the possibility that base i and j are paired. This parameter
can be calculated with the help of RNAfold [38]. Using
EFa,b > 0.6, only potential ESEs located in single stranded
regions were considered as positive examples.
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