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Abstract. PROPRE is a generic and semi-supervised neural learn-
ing paradigm that extracts meaningful concepts of multimodal data flows
based on predictability across modalities. It consists on the combination of
two computational paradigms. First, a topological projection of each data
flow on a self-organizing map (SOM) to reduce input dimension. Second,
each SOM activity is used to predict activities in all other SOMs. Pre-
dictability measure, that compares predicted and real activities, is used
to modulate the SOM learning to favor mutually predictable stimuli. In
this article, we study PROPRE applied to a classical visual pedestrian data
classification task. The SOM learning modulation introduced in PROPRE
improves significantly classification performance.

1 Introduction

An autonomous robot needs to detect and learn sensory-motor regularities that
emerge from its interaction with the environment. This autonomous learning of
representations is an active research field in developmental robotics [1, 2, 3]. In
this article, to tackle this problem, we take inspiration from biological agents
who are already able to interact with their environment in a complex way.

Multimodal correlation detection seems to be a key point for humans to
perceive their environment. Indeed, multimodal stimuli improve learning and
detection of events compared to monomodal stimuli [4]. From a computational
point of view, the cortex is composed of cortical areas specialized in one modality
as visual or motor areas. However, they seem to have generic architecture and
data processing [5]. Especially, self-organization (i.e. close neurons having close
sensibility) is a widespread computational paradigm in sensory areas [6, 7].

PROPRE is a neural paradigm for multiple data flow fusion by learning
correlations across modalities, an idea already developped in [8, 9, 10]. PRO-
PRE provides a neural implementation of continuous, semi-supervised learning
consisting of the combination of projection and prediction (PROPRE means
PROjection-PREdiction). Each data flow is projected on a self-organizing map
(SOM). Learning of this SOM is modulated by a supervised predictability mea-
sure that quantify the ability of the projection to predict other data.

In our previous works [11, 12], we focused on the validation of PROPRE
paradigm using artificial multimodal data related to some robotic behavior. In
this article, we apply PROPRE on a the challenging task of visual pedestrian
pose discrimination[13, 14]. In the next section, we introduce the dedicated



PROPRE architecture that we use for the pedestrian classification task. The
task protocol and obtained results are presented in section 3.

2 PROPRE paradigm

2.1 General description

PROPRE is based on the combination of projection and prediction. The pro-
jection step (see section 2.2) aims to provide a low dimensional representation
of the current input stimulus. Each projected representation is used to predict
projected representation of all other data flows (see section 2.3). A predictive
measure (see section 2.4) quantifies the quality of the prediction that reflects
the correlation between the multimodal stimuli. Indeed, correlated stimuli are
predictable and so are their projections. This predictive measure is used to
modulate the projection learning to favor the mapping of correlated stimuli. For
more details about the general PROPRE paradigm, please refer to [12].

In the case of the pedestrian discrimination task (see section 3.1), we used
PROPRE with a visual data flow (representing the detected pedestrian) and a
category data flow (representing the potential danger of the pedestrian). The
aim of the task is to transfer the knowledge of the category data flow to the visual
one, so that to be able to visually recognize potentially dangerous pedestrians.
In this context, the category data flow is considered as an already processed
stream (that may be the result of a learning of another part of the system)
and is thus neither computed in the projection nor in the prediction step. In
practice, PROPRE consists on the alternating of a computation and a learning
stage (respectively equations 1.x and 2.x in figure 1 and in the next sections).
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Fig. 1: PROPRE architecture used for the pedestrian visual data classification
task. Please refer to text for details.

2.2 Projection

To project an input data flow, we use slightly modified Kohonen self-organizing
maps [15] which provide some interesting properties, such as quantization [16].
In practice, S is a bi-dimensional Kohonen map that receives the visual data



flow V (see figure 1). Let wSV(x, t) be (wSV (x, y, t))y with wSV (x, y, t) the
weight from the unit at position y in V to the unit at position x in S at time t.
With these notations, the activity of S at position x at time t is computed as

S(x, t) = e
−||x−x∗||22

σ2 (1.a)

with x∗ so that ||wSV(x∗, t) − V(t)||2 = min
x
||wSV(x, t)−V(t)||2 with V(t)

the current stimulus, σ the variance of the Gaussian neighboorhood radius1 and
|| · ||2 euclidean distances.

The incoming weights of S are updated as following:

∆wSV(x, t) = ηλ(t)S(x, t)(V(t)−wSV(x, t)) (2.a)

λ(t) =

{
1 if Pr(t) ≥ θ
0 otherwise

with η the learning rate1, Pr(t) the predictability measure (see section 2.4) and θ
the predictability threshold. Thus, only predictable stimuli (i.e. that have their
predictability measure overcoming the threshold) are learned by the system.
λ(t) is fixed to 1 for some time steps at the beginning of the learning so that
projection and prediction converge and predictability measure becomes relevant.

2.3 Prediction

The projection activity of S is used to provide a prediction in P of the current
category stimulus of the data flow C. The activity of P at position x at time t
is computed as a weighted sum of the S activity:

P (x, t) =
∑
y

wPS(x, y, t)S(y, t) (1.b)

with wPS(x, y, t) the weight from the unit at y in S to the unit at x in P .
The prediction is learned by linear regression [17] that minimizes the mean

square error between the prediction and the current category stimulus C(t):

∆wPS(x, y, t) = η′S(y, t)(C(x, t)− P (x, t)) (2.b)

2.4 Predictability measure

The predictability measure aims to quantify the quality of the category predic-
tion P w.r.t. the real category C. Let define Xc as {x|C(x) 6= 0} when C
represents the c category, which is relevant as the category is represented as a
spatial coding (see section 3.1). As predictability measure we use one of the
three following measures with c∗ the current real category represented by C(t):

1To reduce convergence time of the SOM, the variance of the Gaussian and the learning
rate decrease from high values to low constant values that keep the SOM able to adapt to
changes in the data flow.



Pr(t) =

∑
x∈Xc∗

P (x, t)

max
c

∑
x∈Xc

P (x, t)︸ ︷︷ ︸
Pr1(t)

or

∑
x∈Xc∗

P (x, t)∑
c

∑
x∈Xc

P (x, t)︸ ︷︷ ︸
Pr2(t)

or

 ∑
x∈Xc∗

P (x, t)

2

∑
c

∑
x∈Xc

P (x, t)︸ ︷︷ ︸
Pr3(t)

(1.c)

Pr1 represents if the prediction of the real category is maximal.
Pr2 represents the proportion of the prediction of the real category compared
to all predictions.
Pr3 represents the strength of the prediction of the real category and its
proportion compared to all predictions.

3 Results

3.1 Pedestrian classification task

We used data taken from the Daimler monocular pedestrian detection bench-
mark [14] to which we manually assigned one of four possible orientations (left,
right, front and back) as in [13]. The left orientation is categorized as a potential
danger whereas the other three categories are considered as not dangerous. The
data set was split into a learning and an evaluation data set composed respec-
tively of 11351 and 1333 pictures. In practice, each visual stimulus is a 18x42
vector corresponding to the HOG feature of a 32x64 image of a pedestrian. In
the terms of [18], we use a cell size of 8x8 pixels, a block size of 16x16 pixels, a
border of 0 pixels, and a window size of 32x64 pixels to compute HOG features.
The category stimulus is a 7x32 vector which represents the potential danger by
the spatial position of a Gaussian (see figure 2).
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Fig. 2: Example of stimuli provided to PROPRE for a) (resp. b)) a dangerous
(resp. non dangerous) pedestrian with left (resp. right) orientation.

3.2 Classification performances

In table 1, we present the performance of various algorithms on the pedestrian
classification task described in the previous section:



• SOM+prediction1 that means that we deactivated the modulation of the
projection learning by the predictability measure (i.e. ∀t, λ(t) = 1),

• PROPRE1 with the three different predictability measures (see section 2.4)
and adaptated predictability thresholds (see section 2.2),

• classical support vector machine (SVM) algorithm, which is the reference
supervised classification algorithm [17].

XXXXXXXXXXOrientation
Algo SOM + PROPRE

SVM
prediction Pr1 > 0.7 Pr2 > 0.5 Pr3 > 0.5

left 81.85 86.57 85.34 85.08 89.44
right 21.92 59.49 57.14 62.73 97.31
front 82.70 87.89 87.37 87.61 96.84
back 90.96 94.64 93.84 91.85 98.88

average 71.74 83.53 82.35 82.92 96.62

Table 1: Average percentage of correct classification over 10 experiments.

We can observe that the modulation of the projection learning introduced
by PROPRE significantly improves the classification results for all pedestrian
orientations, especially for right one, whatever the predictability measure used.
The improvement of right orientation pedestrian classification is quite remark-
able as these pedestrians are visually extremely similar to the one with a left
orientation, but correspond to different “dangerousness” categories.

PROPRE performance is not as good as the one provided by SVM but this
is not an aim of our model. Indeed, PROPRE provides unsupervised and plastic
learning [12] and input space mapping contrary to SVM. Moreover, PROPRE
performance can be strongly improved by increasing the SOM size.

4 Conclusion and perspectives

PROPRE is a semi-supervised learning paradigm for multimodal data, that con-
sists on the combination of projection and prediction. Predictability measure,
that quantifies the ability of a projection to predict the other ones, influences the
corresponding projection learning. Thus, stimuli correlated across modalities are
mainly mapped by the projections.

In this article, we apply PROPRE to an important real-world object discrim-
ination task. PROPRE receives a visual data flow (representing a pedestrian in
one of four orientations) and a category data flow (representing the potential

1We use a 10x10 map for the projection map S and the predicted category of a visual
stimulus is determined by the localization of the maximum of induced activities in P .



danger of the pedestrian). With the modulation of the projection learning intro-
duced by PROPRE, classification performance is significantly improved what-
ever the predictability measure chosen between the three proposed in this article.

Based on these promising results, we plan to apply PROPRE to multimodal
real data as for example visual and laser data for pedestrian detection. Moreover,
in order to reduce parametrization of the model, we want to introduce a sliding
predictability threshold rather than a fixed one. This may be possible as current
experiments tend to show that PROPRE performance does not depend on the
precise tuning of the fixed threshold.
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