
A real-time applicable dynamic hand gesture
recognition framework

Thomas Kopinski
University Ruhr West

Computer Science Institute
46236 Bottrop, Germany

Email: thomas.kopinski@hs-rw.de

Alexander Gepperth
ENSTA ParisTech

828 Blvd des Maréchaux
91762 Palaiseau, France

Email: alexander.gepperth@ensta-paristech.fr

Uwe Handmann
University Ruhr West

Computer Science Institute
46236 Bottrop, Germany

Email: uwe.handmann@hs-rw.de

Abstract—We present a system for efficient dynamic hand
gesture recognition based on a single time-of-flight sensor. As
opposed to other approaches, we simply rely on depth data to
interpret user movement with the hand in mid-air. We set up
a large database to train multilayer perceptrons (MLPs) which
are subsequently used for classification of static hand poses
that define the targeted dynamic gestures. In order to remain
robust against noise and to balance the low sensor resolution,
PCA is used for data cropping and highly descriptive features,
obtainable in real-time, are presented. Our simple yet efficient
definition of a dynamic hand gesture shows how strong results are
achievable in an automotive environment allowing for interesting
and sophisticated applications to be realized.

I. INTRODUCTION

Hand gesture recognition, as an intuitive supplementary
means, finds its way into many fields of human-machine
interaction (HMI) and our every day life. The challenges are
manifold and strongly depend on the given task as e.g. fingers
may occlude themselves, the user has little time to react to
system feedback or changing environmental conditions can
present additional difficult hurdles which need to be reckoned
with. Within the automotive environment, hand gestures per-
formed mid-air can have different application scenarios such as
controlling infotainment systems, HUDs or displaying vehicle
information. The driver should, in a typical driving scene, be
able to focus on the environment and has a limited interaction
space due to different objects in the vehicle interior.
We present a hand gesture recognition system with a single
depth sensor allowing us to embed the system into any kind of
environment regardless its lighting conditions, as we make use
of a single time-of-flight sensor (ToF-sensor). We demonstrate
how our setup is easily embedded into a car interior and pro-
vide interesting interaction scenarios (cf. Fig.1). Our approach
is almost purely data-driven as we set up a large database
to train multilayer-perceptrons (MLPs) for classifying static
poses that define each of the targeted dynamic gestures. We
present a simple yet robust method of defining dynamic hand
gestures in such a way that there is no need to define complex
models or implement sophisticated tracking techniques. This
paper is set up as follows: After we present an extensive
overview over state of the art methods in Sec.II we give a
definition of our approach and outline the main differences.
We go on to describe our system setup in Sec.III and describe
the advantages of doing so. Furthermore in Sec.IV we present
our database comprising a large number of data samples which
builds the foundation for our system. We then describe the

employed holistic point cloud descriptors in Sec.V as well as
the parametrization of the MLPs and the underlying fusion
technique in Sec.VI. The main idea of defining dynamic hand
gestures is outlined in Sec.VII. We prove that our system is
able to perform well in real-time by extensive test runs on
unseen participants followed by a statistical analysis of our
experiments in Sec.VIII. We conclude with a discussion of this
approach and by giving an outlook on future work in Sec.IX.

II. RELATED WORK

Dynamic Gesture recognition poses two main problems,
referred to as the spatial segmentation (where does the ges-
ture start and end) and the temporal segmentation (when
does it start and end), together denoted as spatiotemporal
segmentation in [1]. In this article, the authors propose a
complex framework consisting of multiple lower- and higher-
level modules processing information between each other. Our
work differs, in that we have a purely depth-based and data-
driven approach. Our system exploits the already established
static hand gesture recognition framework and opposed to
[1] we prove that dealing with the subgesture problem is a
viable approach realisable efficiently in real-time. Moreover
our suggestion does not have to deal with detecting the optimal
sequence within a timeframe and classification is done reliably
by an MLP.
Kurakin et al. [2] make use of a Kinect sensor to solve
the classification task of disambiguating between 12 dynamic
American Sign Language (ASL) gestures. However the Kinect
is not really applicable under daylight conditions, their feature
selection is more complex and the test set is very small
which makes it hard to compare the efficiency of the system.
Moreover our approach does neither rely on tracking nor on
normalization of the hand cluster.
Vision based approaches typically rely on the detection of hand
pixels [3], employ tracking algorithms and HMMs to detect
dynamic gestures [4] or finite-state machines (FSMs) to define
a dynamic movement via a sequence of static states. The visual
approach in [5] disambiguates between six ASL signs with
an FSM, however it forms complex feature vectors to encode
finger movements coming from a glove. FSMs are also used in
the approach from [6] where the hand and the head of the user
are tracked. The process of feature generation is comparatively
complicated and the gesture test set is rather simple while the
FSM model itself can become very complex. Our approach
avoids these cumbersome steps, allows for uncertainties to
occur while remaining easy to define overall.



The problem of detecting hand gestures is tackled in [7] via
statistical modeling which is something we want to avoid as
it adds more complexity to the task. Malima et al. [8] show
a fast approach relying heavily on skin color for detection
and segmentation and on calculating the center of gravity to
define the hand region itself. However it remains unclear how
expressive this method is as the tests conducted do not seem
to be extremely representative.
While the approaches for hand gesture recognition are covered
in a more general way in [9], Suarez et al. [10] give a more
extensive overview of hand gesture recognition with depth
information.
The main differences to our approach are that we rely solely
on depth data, so calibration is not necessary, and neither is the
definition of a complex hand model. Aiming at interesting ap-
plication scenarios, we define complex dynamic hand gestures
easily by our approach arguing that dealing with a subgesture
problem can be dealt with efficiently in real-time, as we show
in this contribution. Moreover we show that by our definition
we retain the possibility to easily extend our system to contain
more dynamic gestures and even more complex ones.

III. SYSTEM SETUP

Our hand pose recognition pipeline consists of a ToF-
sensor, a point-cloud cropping module, a feature transforma-
tion module, a neural network architecture and a graphical user
interface displaying the user feedback for the detected static
hand poses as well as the dynamic hand gestures. The ToF-
sensor is recording the nearby user environment (see Fig.1)
and is connected to a standard laptop running the Ubuntu
OS. In an initial step all surrounding data points except for a
designated volume of interest (VOI) are cropped. The resulting
point cloud is again reduced to the minimum data needed via
the PCA algorithm (principal component analysis) resulting
in fingers, palm and wrist only. The remaining point cloud
data is transformed via the descriptor described in Sec.V into
a histogram forming a so-called feature vector characterizing
the shape of the cloud. The recognition task is done by MLPs
trained on a large database yielding a score for the each
class for a designated point cloud at any point in time t. All
detections of static and dynamic hand poses are visualized in a
GUI (cf. Fig.4) displaying the inactive state, the current static
hand pose and the currently (if any) performed dynamic hand
gesture. The system is able to work at a framerate of up to
20Hz which is more than sufficient as we will demonstrate
later on.

IV. STATIC HAND POSE DATABASE

Our hand pose database builds the foundation of our
hand gesture recognition system. We recorded 600000 samples
coming from 20 different persons with the Camboard Nano
sensor (see [11] for details on this low-cost ToF sensor). Our
intention was to define a set of hand poses which is difficult
to disambiguate while being also meaningful in such a way as
that each hand pose can have a clearly recognizable application
scenario in the field of HMI. Additionally we wanted the poses
to provide the basis for the definition of dynamic hand gestures
as described later on. Since the orientation and position of
the hand can vary significantly depending on the user and the
application scenario the participants were asked to translate

Fig. 1. A typical application scenario: The driver interacts with the
infotainment system. The ToF-sensor captures the sensitive VOI marked in
red.

and rotate their hand during recording in order to capture
this variance. Moreover, in order to deal with the scaling
problem, for each of the poses three ranges were defined -
near, intermediate and far. During the recording we made sure
that for the 3000 samples recorded from each person per hand
pose equally many, i.e. 1000, were recorded in each range.
The data was captured by a single ToF-sensor which was set
to a adequate illumination time for near-range interaction and
cropped the scene appropriately in order to get rid of irrelevant
background data. The database comprises ten different hand
poses denoted a-j (cf.Fig. 2).

V. PCA AND POINT CLOUD DESCRIPTORS

A. Principal Component Analysis for Point Cloud Cropping

The main directions of the cloud are found using Prin-
cipal Component Analysis (PCA) [12]. PCA aims to find
uncorrelated basis vectors for an arbitrary set of data vectors.
Eigenvectors (also termed ”principal components”) are ordered
by the variance of data points projected onto them, allowing
efficient data compression by omitting principal components
of low variance. This algorithm is applied as shown below,
using as input the set of n 3D coordinates of points in a point
cloud denoted xj , j ∈ [0, n]).

• The mean value x̄ = 1
n ·

∑n
j=1(xj) is computed.

• The scatter matrix is calculated :

S =

n∑
j=1

(xj − x̄)(xj − x̄)>

This matrix can be used as maximum-likelihood esti-
mate of the covariance matrix.

• The Eigenvectors of this matrix yield the principal
components.

We intend to cut off ’unnecessary’ parts of the cloud, i.e.
outliers and elongated parts of the forearm. In this case, the
principal components correspond to orthogonal vectors that



Fig. 2. The static hand pose database consisting of ten different hand poses denoted a-j.

represent the most important directions in the point cloud.
The vector with the most important y-component allows to
recognize the axis hand-forearm.

The wrist, as the link between the hand and the forearm,
is detected in order to determine a limit for the cropping.
The employed method assumes that the distance between the
endpoint of the fingers and the centroid is an upper bound of
the distance between the centroid and the wrist.

To find the endpoint of the hand towards the direction
of the fingers, tests are made along the axis, starting at the
centroid and moving progressively upward. At each step, we
determine whether there are points within a designated small
neighborhood around the axis. The upper end of the hand is
marked if this number of neighboring points equals 0. Then
the bottom limit for the wrist is fixed at the same distance from
the centroid, but in the inversed direction along the y-axis. All
points below this wrist limit are cut out which is exemplarily
shown in Fig.3.

B. Forming descriptive feature vectors from Point Clouds

The PFH-Descriptor (PFH-Histogram) [13] is a local de-
scriptor which relies on the calculation of normals. It is able
to capture the geometry of a requested point for a defined
k-neighbourhood. Thus, for a query point and another point
within its neighbourhood, four values (the point features or
PFs) are being calculated, three of which are angle values
and the fourth being the euclidean distance between these two
points. The angle components are influenced by each point’s
normal, so in order to be able to calculate them, all the normals
have to be calculated for all points in the cloud. Therefore we
are able to capture geometric properties of a point cloud in a
sufficient manner, depending on the chosen parameters. These

parameters have been thoroughly examined in our previous
work which led for example to an optimal choice for the
parameter n, the radius for calculation of the sphere which
encloses all points used to calculate the normal of a query
point. One major drawback is the fact that the PFH-descriptor
cannot be easily embedded into a real-time applicable system
as the computation cost becomes too high, when extended
to a global descriptor. To overcome this issue, we present a
modification of the PFH-Descriptor.
Our version of the PFH-Descriptor makes use of its descriptive
power while maintaining the real-time applicability. Using the
PFH in a global sense would mean having to enlarge the
radius so that every two point pairs in the cloud are used to
create the descriptor. This quickly results in a quadratically
scaling computation problem as a single PFH-calculus would
have to be performed 10000 times for a point cloud of 100
points. Given the fact that our point clouds have a minimum
size of 200 points up to 2000 points and more, this is not
feasible for our purposes. Therefore we randomly choose
10000 point pairs and use the quantized PFs to build a global
625-dimensional histogram. We calculate one descriptor per
point cloud which forms the input for the neural network. We
have conducted numerous experiments with this descriptor in
various application scenarios and found it to be well balanced
in terms of descriptiveness and computation cost.

VI. NEURAL NETWORK ARCHITECTURE AND FUSION
TECHNIQUE

We trained two MLPs and divided the database accordingly
to allow for the implementation of a sophisticated fusion
technique. Both MLPs have three layers - input, hidden and
output layer. Extensive parameter search in work conducted so
far yielded this network structure with 50 hidden neurons in



Fig. 3. Point cloud before PCA-cropping (left) and after (right).

each MLP and standard parameters for training. Each output
layer comprises 10 neurons corresponding to the 10 hand
pose classes. The first MLP has an input layer of size 625,
corresponding to the size of the feature vector while the second
MLP has an input layer of size 635 - the size of the feature
vector added to the number of output neurons of the first
MLP. Each Point Cloud is transformed into a histogram of
length 625 - as described in Sec.V and fed into the first MLP.
The MLP processes the feature vector, determines the neuron
values in the output layer and concatenates these values again
with the feature vector which is then presented as input into
the second MLP. The neuron with the highest activation in the
second MLP corresponds to the designated class. For more
information please refer to our preceding work in [11],[14] as
the theory is beyond the scope of this paper. We have tested
various techniques for this problem and this fusion approach
resulted in the best generelization performance. The neural
network architecture was implemented using the FANN library
[15].

VII. DYNAMIC HAND GESTURES

We define hand gestures as being dynamic, i.e. changing
in state over time, and they can be contrasted against static
hand poses which in turn do not change in state. Therefore,
in an in-car infotainment system, a static hand pose as the
one pose (cf.Fig. 2, hand pose ’a’) could be connected to
selecting the first audio channel while a dynamic zooming
in/out gesture could be applied in a typical maps application.
Our approach makes use of the simple fact that a dynamic hand
gesture must have a clearly distinguishable starting pose and a
clearly distinguishable ending pose. Consequently a ’grabbing’
movement can be defined by starting as hand pose ’h’ and
ending as hand pose ’f’ in our hand pose database. This is
a clearly defined feature and serves as a universal definition
in that any kind of dynamic gesture can be captured in this
sense. The number of theoretically definable gestures therefore
sums up to n(̇n − 1) = 90 gestures definable from our static
database, as any case is bidirectional i.e. a gesture from ’a’ to
’b’ can be performed vice versa.
We denote a static hand pose as a state s at any given point in
time t: st. A sequence of n occurrences of a certain hand pose
is defined as < st=0, ..., st=n >. During the interaction phase
our gesture recognition module takes consecutive snapshots
which are interpreted by the system via a voting scheme. For

a series of 10 consecutive snapshots, a static hand pose is
recognized by the most frequent occurrence within this series
if the occurrence is above a certain threshold. In order to take
into account that our framerate can vary between 5-20Hz,
a threshold of 7 yields satisfactory performance in terms of
recognition rate and user acceptance as the feedback has to
be provided to the user and in order to suppress too frequent
changes.
We use this as a basis of defining dynamic hand postures
within this time series as follows. For a dynamic gesture any
occurrence of the starting state at any given point in time sstt
followed by any occurrence of the ending state sent+m with
m ≥ 1 within the observed time series corresponds to the clas-
sification of the sequence as containing the dynamic gesture:
< st=0, ..., s

st
t , ..., .sent+m, ..., st=n >. This the most simplified

notation which allows for the fact that misclassifications may
occur in between the detection of the starting state and the
detection of the ending state. The only condition being made
here is that both classifications must occur within a certain
timeframe and that the starting state must be detected before
the ending state.

In order to stabilize recognition results, a simple extension
of the definition above can be made. As soon as one occurrence
of a starting state is made this starting point of a gesture is
only taken as valid if it is immediately followed by one or
multiple occurrences of the same state, i.e. sstt = sstt+1. The
same rule can be applied for the the ending state of a dynamic
gesture. The restriction that these consecutive occurrences of
states must form uninterrupted subchains within the observed
timeframe suffices to define a robust dynamic gesture recogni-
tion pipeline, recognizing dynamic hand gestures well in real-
time as we will see in Sec.VIII. Of course a proper choice of
parameters is immanent and strongly depends on factors such
as framerate, classification rate and user feedback. The choice
of the length of the observed timeframe restricts other param-
eters as the length of the subchains for starting and ending
sequences. The benefit of this simple definition is the fact that
we allow for uncertain states or even misclassification to occur
in between starting and ending sequences of a dynamic gesture
as well as within the timeframe as a whole. Additionally, as
we found out during the testing phase, this approach provides
extra flexibility as every user has a different way of performing
a gesture and thus an otherwise more restrictive definition of
a dynamic gesture can be too obstructive.

VIII. EXPERIMENTS AND RESULTS

The first problem to define is the sensible area or volume
of interest (VOI). As opposed to systems working with 2D
gestures the user has no way of knowing whether she/he has
entered the sensitive area or not. To this end we decided
to describe the approximate VOI to each user and let them
interact freely. For each recording we asked the user to enter
the designated VOI and perform the corresponding gesture.

We have conducted a series of tests with 10 different
persons whose data is not contained in the database, i.e., the
results given in Table I show the generalisation performance of
our system to previously unseen persons. We explained to each
person how our system works and realised a GUI containing
the system’s response whether a gesture was recognized or
not. For the experiments in this contribution, we defined a



Fig. 4. Demo setup: The user performs the grabbing gesture defined by
the starting pose ’h’ (top) and the ending pose ’f’ (bottom) (cf. Fig.2 for
notations)

timeframe of length n = 10, meaning that from the moment
user input is generated we observe the last 10 consecutive
snapshots and the corresponding classifications in order to
determine whether a dynamic gesture is contained or not.
Moreover, we found that for a timeframe of this size, two iden-
tical consecutive starting poses and two identical consecutive
ending poses suffice to efficiently detect a dynamic gesture.

Four gestures were defined to this end: Grab, release, zoom
in and zoom out. Each gesture can be defined via an unam-
biguous static state from our database. The grabbing motion
(shown in Fig. 4) is defined as starting with hand pose ’h’ and
ending in hand pose ’f’. The corresponding release gesture
is the exact inverse starting with hand pose ’f’ and ending

with hand pose ’h’ (cf. Fig.2). The pinching/zooming gesture
is defined analogously and can be seen as the same gesture
known from pinching/zooming in 2D in e.g. a typical maps
application. To this end, pinching is defined as starting with
hand pose ’i’ and ending with hand pose ’f’. Consequently
the inverse movement from ’f’ to ’i’ defines the zooming
gesture cf. Fig.2. All users found the concept easy to grasp
and interacted with our system by this means naturally.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
grab 10 6 3 5 5 8 6 7 5 4
release 7 6 9 8 9 8 8 9 9 7
zoom in 10 10 10 10 10 10 10 10 10 10
zoom out 9 10 7 10 9 9 10 8 9 9

TABLE I. EACH GESTURE WAS PERFORMED 10 TIMES BY EVERY
PERSON. A COLUMN ENTRY REPRESENTS THE NUMBER OF CORRECTLY

RECOGNIZED SAMPLES PER PERSON AND GESTURE.

The overall classification rate is 82.25% averaged over all
persons and gestures. There is a 100% recognition rate for
zooming in, followed by 90% for zooming out, 80% for release
and 59% for grabbing. This shows that with a robust detection
mechanism for static hand poses our approach resembles a
viable solution. However misclassifications still occur as our
data recordings show in Tab. II for all hand gestures, although
this amounts to only a few cases as the statistics show. In
the case of zooming in/out, the misclassifications sum up
to 16 and 3 cases respectively, which in turn makes up for
1% or 0.1% of all the cases. For grab/release the numbers
are higher, namely 151 and 78 misclassifications respectively
which in turn makes up for 10% and less than 5% of all
classifications. Comparing these number to the figures in Tab.
I helps explaining why the individual gestures perform more
poorly as it seems evident that more misclassifications of static
hand poses impair the performance of the system. However
it also shows that misclassifications are allowed to happen
while a gesture is still recognized correctly, which shows the
flexibility of our approach. A more in-depth analysis of our
recordings reveals that misclassifications occur in 153 cases
of all the correctly recognized gestures performed by the
participants within the timeframe and between starting and
ending sequence. Nevertheless our approach helps to remain
robust by dismissing these samples. This shows that such a
simple definition of a dynamic gestures is able to provide a
satisfactory and stable performance under challenging condi-
tions in real-time. As these statistics also indicate, users tend
to remain longer in the final positions of a gesture, nearly 3-4
times longer in some cases (cf. Tab. II). Hence e.g. in the case
of ’grabbing’ the number of detected ending states (state ’f’
- 1160 samples) is more than 3 times higher than the number
of detected starting states (state ’h’ - 338 samples). Why that
is the case is subject to further analysis but it helps to provide
further stability mechanisms for the problem at hand.

a b c d e f g h i j sum
grab 24 0 3 4 0 1160 13 338 107 0 1649
release 0 0 4 11 0 489 4 1126 59 1693
zoom in 5 0 0 0 0 875 0 11 669 0 1560
zoom out 1 1 0 0 0 308 1 0 1361 0 1361

TABLE II. ALL HAND POSE CLASSIFICATIONS SUMMED UP OVER ALL
PERSONS AND SEQUENCES.

The individual results per person differ strongly. Person
1 seemed to be at ease with the system as only 4/40 ges-



tures were not recognized while the result for person 3 are
the weakest with 11 misclassifications in total. What seems
interesting is the fact that, although the gestures are defined
inversely, the results differ significantly. In the case of zooming
in/out there is a 10% drop in classification performance and
for the release/grab gesture this sums up to about 20% in
misclassification rate. The former result can be interpreted
in such a way as that misclassifications influence the overall
results and may interrupt a sequence leading to mostly no
classification at all by our system. The latter is more difficult
to explain, but the data recorded suggests that for most persons
it is easier to grasp the notion of a releasing gesture than that
of a grabbing gesture as evidently most users did not finish the
movement to the final state and thus our system was unable
to determine whether the motion was finished or not. Most
users left their hand half open and in their mind had already
finished the movement. This problem can be easily fixed by a
relaxed restriction of our definition or by simple user guidance
or training.
The average sequence length for performing a gesture is
16.34 which shows that defining the timewindow of length
n=10 absolutely suffices for our purposes. One has to take
into account that each input cloud above a certain threshold
(w.r.t. the point cloud size) is taken as input. This on the
one hand suppresses noise and unwanted behaviour and on
the other hand stabilizes overall results as ’meaningful’ input
is favoured. The average time the users needed to perform a
gesture was about 1.5-1.7 seconds averaged over all gestures
and persons.
However, there still needs to be conducted more research
on why misclassifications occur and the figures differ for
individual cases although the gestures defined are closely
related.

IX. DISCUSSION AND FUTURE WORK

We have presented an in-car dynamic hand gesture recogni-
tion system based on ToF-sensor data and MLP classification.
The sensor is mounted to the front console and captures the
nearby driver environment, making our system sensible to user
input. Depth data is cropped and transformed into a feature
vector capturing the shape of the hand and classified by a
sophisticated fusion technique optimized for this problem. The
recognition of dynamic gestures from static poses happens via
a simple start-end definition of the gesture and experiments
on ten unknown persons show that for a real-time application
this approach leads to very satisfying results. Our system setup
requires only little calibration as the sensor needs to be directed
into the car interior while the descriptors and the MLPs are
robust enough to make up for invariances in hand orientations,
calibration errors and noise resulting from sensor measurement
errors or lighting influences.
Experiments show that results may vary for different persons
as gestures are not easily definable in a general way but the
parametrisation presented in this work builds a good starting
point for further research. An optimal configuration with re-
spect to e.g. the duration of a gesture very much depends on the
given task, the setting and not least on the personal preferences
of the user which may explain the partly large differences
in classification rate for similarly defined gestures. Further
work will address the most common errors and difficulties.
We will improve the system by further refining the dynamic

hand gesture definition and provide a statistical analysis of
the task at hand. The possibilities provided by our gesture
set are promising thus we will seek to define a larger dynamic
gesture set driven by possible in-car applications. Our approach
is moreover easily extendable to recurring gestures and even
more complex cases as first research has already provided
promising results in this direction. All research will be paired
with a more complex testing environment by realising an
infotainment system controllable by dynamic gestures. All data
comprising point clouds, feature vectors, whole time sequences
as well as timeframes and classification results will be made
publicly available.

REFERENCES

[1] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “A unified framework for
gesture recognition and spatiotemporal gesture segmentation,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 31, no. 9,
pp. 1685–1699, 2009.

[2] A. Kurakin, Z. Zhang, and Z. Liu, “A real time system for dynamic
hand gesture recognition with a depth sensor,” in Signal Processing
Conference (EUSIPCO), 2012 Proceedings of the 20th European.
IEEE, 2012, pp. 1975–1979.

[3] M.-H. Yang, N. Ahuja, and M. Tabb, “Extraction of 2d motion trajec-
tories and its application to hand gesture recognition,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 24, no. 8, pp.
1061–1074, 2002.

[4] A. Ramamoorthy, N. Vaswani, S. Chaudhury, and S. Banerjee, “Recog-
nition of dynamic hand gestures,” Pattern Recognition, vol. 36, no. 9,
pp. 2069–2081, 2003.

[5] J. Davis and M. Shah, “Visual gesture recognition,” in Vision, Image
and Signal Processing, IEE Proceedings-, vol. 141, no. 2. IET, 1994,
pp. 101–106.

[6] P. Hong, M. Turk, and T. S. Huang, “Gesture modeling and recognition
using finite state machines,” in Automatic face and gesture recognition,
2000. proceedings. fourth ieee international conference on. IEEE,
2000, pp. 410–415.

[7] S. Reifinger, F. Wallhoff, M. Ablassmeier, T. Poitschke, and G. Rigoll,
“Static and dynamic hand-gesture recognition for augmented reality
applications,” in Human-Computer Interaction. HCI Intelligent Multi-
modal Interaction Environments. Springer, 2007, pp. 728–737.

[8] A. Malima, E. Ozgur, and M. Çetin, “A fast algorithm for vision-based
hand gesture recognition for robot control,” in Signal Processing and
Communications Applications, 2006 IEEE 14th. IEEE, 2006, pp. 1–4.

[9] S. Mitra and T. Acharya, “Gesture recognition: A survey,” Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE Trans-
actions on, vol. 37, no. 3, pp. 311–324, 2007.

[10] J. Suarez and R. R. Murphy, “Hand gesture recognition with depth
images: A review,” in RO-MAN, 2012 IEEE. IEEE, 2012, pp. 411–
417.

[11] T. Kopinski, S. Magand, A. Gepperth, and U. Handmann, “A pragmatic
approach to multi-class classification,” in Neural Networks (IJCNN),
2015 International Joint Conference on. IEEE, 2015, p. to appear.

[12] I. Jolliffe, Principal component analysis. Wiley Online Library, 2005.
[13] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning point

cloud views using persistent feature histograms,” in Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on.
IEEE, 2008, pp. 3384–3391.

[14] T. Kopinski, A. Gepperth, and U. Handmann, “A simple technique for
improving multi-class classification with neural networks,” European
Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, 2015.

[15] S. Nissen, “Implementation of a fast artificial neural network library
(fann),” Report, Department of Computer Science University of Copen-
hagen (DIKU), vol. 31, 2003.


