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Abstract— Many state of the art object classification appli-
cations require many data samples, whose collection is usually
a very costly process. Performing initial model training with
synthetic samples (from virtual reality tools) has been proposed
as a possible solution, although the resulting classification
models need to be adapted (fine-tuned) to real-world data
afterwards. For this bootstrapping process, we propose to use
an incremental learning algorithm from the cognitive robotics
domain which is particularly suited for perceptual problems.
We apply it to a pedestrian detection problem where a synthetic
dataset is used for initial training, and two different real-world
datasets for fine-tuning and evaluation. The proposed scheme
greatly reduces the number of real-world samples required
while maintaining high classification accuracy. We additionally
demonstrate several innovative incremental learning schemes
for object detection, the basic idea being that usually only
very few background samples are actually similar to pedestrian
samples. By suitable arrangement of incremental learning steps,
we can keep classification models simple by representing only
such ”hard” background samples.

I. INTRODUCTION

Applications in domains of driver assistance systems and
autonomous driving demand visual recognition of traffic
participants invariant to changes like illumination, view-
point etc. To cope with this, modern object classification
systems based on statistical learning require datasets with
large numbers of annotated samples recorded under dif-
ferent conditions. Building such large datasets is usually
a tedious process and comes with high costs in resource
and time. Furthermore, changes in various aspects of the
application (e.g., hardware) might require construction of
modified datasets and retraining of models from scratch.
This retraining ”from scratch” is necessary since none of the
methods usually used for classification have what is termed
incremental learning capacity (see [1] for a discussion of the
term) that would allow to update models with new samples
without complete retraining, and without ”damaging” already
learned knowledge.

In this context, a very popular setting for activities like
domain adaptation [2] is to consider model training on a
source dataset with easy-to-obtain synthetic samples, e.g.,
from a virtual reality tool, and then to adapt (or fine-tune)
the model to a target dataset with hard-to-obtain real-world
samples. The beauty of this bootstrapping approach is that
the number of hard-to-obtain samples required for fine-tuning
is usually far inferior than the number required for training
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Fig. 1: Temporal sequence of training steps during the boot-
strapping process from a source dataset (usually synthetic) to
a target dataset (usually real-world, here: KITTI). The first
step of positive bootstrapping includes training on positive
samples from the source dataset, then training on positive
samples from the target dataset. The subsequent negative
bootstrapping is conducted in an analogous fashion except
that it excludes ”easy” negative samples.

from scratch, and thus a great increase in efficiency can be
achieved.

In this article, we show that dedicated incremental learning
algorithms, as proposed in the domain of machine learning
and developmental robotics, can be used as a ready-made tool
to greatly facilitate the bootstrapping process for perceptual
tasks in intelligent vehicles. Incremental learning approach
inherently deals with the problem of adaptation to changing
data statistics, e.g., learning representations of new object
categories online. Domain adaptation can be regarded as a
similar problem in the sense that representations of objects
learned in a source domain have to be adapted to a tar-
get domain where statistics of source and target domains
are different. This motivates the application of incremental
learning to the domain adaptation problem. In particular, we
use the incremental learning approach presented in [3] which
is particularly suited for high-dimensional perceptual prob-
lems, for implementing the bootstrapping approach between
a synthetic and several real-world datasets for pedestrian
classification. In each experiment a source and a target
dataset are used (usually corresponding to synthetic and real-
world data), both of which have positive (object) and negative
(background) samples.

Bootstrapping is performed in two phases: with positive
samples (from source and target datasets) first, and subse-
quently with negative samples (also from both datasets), see
Fig. 1. Positive bootstrapping aims to form a coarse represen-
tation of an object, using the source dataset and subsequently



adapting it to the target dataset with only a limited number
of examples. Negative bootstrapping aims at filtering out
simple negative samples from the training process using the
learned positive object representations, so that only ”hard”
negative samples are represented. This scheme eliminates
the necessity of multiple rounds of training employed by
many state of the art object classifiers as well as leaves more
resources in the model to represent object characteristics.

When performing experiments using synthetic data from
[4] and real-world data from the KITTI and Daimler datasets
[5], [6], we show that only a few annotated real samples
are enough to sufficiently adapt models to the (slightly
different) statistics of real samples. Hence, the proposed
framework significantly reduces the number of real images
and corresponding annotations required by the model training
process and renders models reusable across different datasets,
eliminating the necessity of model re-training from scratch.

A. Related Work

The related work can be addressed in two main groups: in-
cremental learning and domain adaptation. A common strat-
egy for incremental learning is to partition the input space
and use local models for each partition. This avoids common
problems of machine learning like catastrophic forgetting [7]
or concept drift [8] since learning is always localized in the
input space, in the sense that a change of statistics in one part
of that space will not affect learning in other, distant parts.
The manner of performing this partitioning is very diverse,
ranging from kd-trees [9] to genetic algorithms [10], adaptive
Gaussian receptive fields [11]. Equally, the choice of local
models varies between linear models [11], Gaussian mixture
regression [9] or Gaussian Processes [12]. The choice has
to be made regarding the constraints on the computational
complexity imposed by the application.

Bootstrapping object classifiers is closely related to do-
main adaptation problem where an object classifier trained
on a source dataset needs to be operated reliably on a
different target dataset. Two major approaches exist to face
this problem: feature transformation and model adaptation.
Feature transformation relies on projecting feature vectors to
a space compatible with the classifier of the source domain
(e.g., [13], [14]). On the other hand, model adaptation is
based on adjusting the parameters of an already learned
model or learning complementary models to cope with
changing data statistics. This is also the approach taken in
the current work. An incremental domain adaptation frame-
work is presented in [15] where two separate classifiers are
used. A linear combination of domain and target classifiers
gives the final classification result and the weight of each
classifier is determined by their recorded performance. In
[16] a Gaussian process regression model is constructed
from confident outputs of a classifier and the scores of
data instances with low prediction values are modified by
this model. A-SVM is introduced in [17] which enables
domain adaptation for SVM based classifiers by learning a
perturbation function between source and target classifiers.
This idea is extended to cope with multiple target domains

by hierarchically organizing these target domains in [18].
The majority of these works are based on discriminative
models where direct adaptation of the model to changing
data statistics is problematic. Hence, these methods often
train new models (target models) on top of the existing ones
(source models) or learn a residual function, i.e., statistical
difference between datasets. In contrast, in the presented
work models are updated directly and continuously in the
presence of new data. Hence, the approach is generic and
works without prior knowledge about datasets.

II. METHODS

The proposed architecture is a three-layer neural network
that maps a given image representation (input vector) to
categories (output vector). The architecture is illustrated in
Fig. 2. Adopting the common notation of neural networks,
we utilize superscripts I , H and O for entities related to
input, hidden and output layers, respectively. The input layer
of the network is composed of a feature vector which is
generated from the input data. The hidden layer of the
network projects the input vector onto the prototype space
based on a distance metric. Sub-spaces of the input space
are coarsely approximated by hyperspheres whose centers
are defined by the prototypes in the hidden layer. The output
layer is composed of all-to-all connected neurons that map
local input space regions (i.e., sets of prototypes) to class
memberships using simple linear regression learning.

A. Projection

The hidden layer of the network is composed of topo-
logically organized prototypes represented as weight vectors
wH~m where wH ∈ IRN×M. Prototypes are distributed in a two
dimensional grid (see Fig. 2), hence prototype locations are
indicated as vectors ~m. However, we drop the vector notation
for brevity and simply use m which can also be interpreted as
prototype ID. The hidden layer acts similar to the well-known
self-organizing map (SOM) algorithm [19]: the projection of
the input onto the hidden layer starts with computing the
distance between the input vector and all prototypes:

z̄H(m) = ||wHm − zI || (1)

where zI is the input vector, || · || is the Euclidean norm.
The prototype m∗ with the smallest distance is called the
best matching unit. In our model, the hidden layer re-encodes
the input in a way that enables incremental learning while
preserving information. Therefore, instead of reducing the
output of the hidden layer to the best-matching unit (as
it is usually done for SOMs), we calculate the (graded)
activations of all hidden layer units:

z̃H = gκ
(
z̄H

)
(2)

where the activation function gκ is Gaussian with standard
deviation κ. The activation function converts the distance
measures into similarity and keep them in the [0, 1] inter-
val. A transfer function is further applied to sparsify these
activations:

zH = TFp
(
z̃H

)
(3)
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Fig. 2: The overview of the proposed architecture applied to pedestrian detection task. The feature vector is composed of
image intensity values for the sake of visualization whereas HoG features are used in the actual implementation. The input
vector is projected on the topologically organized prototype space that involves comparison with all prototypes. This renders
an activation map of prototypes where prototypes similar to the input vector give higher values. At the prediction step the
resulting activation map is mapped to a class-membership vector via regression.

where TF(·) represents a monotonous non-linear transfer
function, TF : [0, 1] → [0, 1] which maintains the best
matching unit value unchanged while non-linearly suppress-
ing smaller values:

TFp(z̃H) =

(
z̃H

)p
(z̃H(m∗))

p−1 (4)

B. Prediction

Hidden layer is connected to the output layer in all-to-
all fashion with weights wP ∈ IRM×C. Generation of output
layer activities is performed by a simple linear transformation
of hidden layer activities zH :

zO(m) = wOm · zH (5)

The class associated with the unit that has the strongest
activity in the output layer becomes simply the predicted
class if the activity exceeds a threshold.

C. Learning model parameters

Prototype adaptation is performed online using the con-
ventional SOM update step except that it takes into account
a control signal λ coming from the output level of the
hierarchy:

wHm ← wHm + λεHgσ(||m−m∗||)(zI − wHm) (6)

where gσ(x) is a zero-mean Gaussian function with standard
deviation σ. The control signal λ is a binary value that is set
to 1 only if the current estimate of class membership, i.e.,
the output layer activities zP is either uncertain or wrong.
The uncertainty is measured from the bounded difference
between first and second maximum of the output layer
activities. If the difference is below a threshold θm the
control signal is set to 1. In accordance with standard SOM
training practices, the SOM learning rate and radius, εH and
σ, are maintained at ε0, σ0 for t < T1 iterations and are

exponentially decreased afterwards in order to attain their
long-term values ε∞, σ∞ at t = Tconv.

Since the output layer performs linear regression, the
weights are modified via online gradient descent, optimizing
the mapping of hidden layer activities zH to the target
representation zT containing the ”true” class of a sample:

wOm ← wOm + 2εOzH
(
zO(m)− zT (m)

)
(7)

In contrast to the hidden layer learning rate, the learning rate
of linear regression, εP remains constant at all times.

D. Incremental Learning for Bootstrapping

We employ incremental learning for bootstrapping of
models in two phases: Positive bootstrapping aims at learning
the characteristics of positive samples from source and target
datasets (i.e., synthetic and real-world data). In order to
realize this, the system is exposed to positive samples from
the source dataset for Tbsp+ iterations. After this, fine-
tuning is performed by exposing positive samples from the
target dataset to the system. The incremental learning scheme
outlined in Sec.II-C ensures that weights are adapted only if
the system cannot correctly classify a given sample. Hence,
prototypes which sufficiently describe a real-world sample
are not touched.

Negative bootstrapping is performed subsequently and
follows a scheme similar to the positive bootstrapping with
additional heuristics. The prototype-based representation pre-
viously trained on positive samples enables early rejection
of negative samples, even before actual classification, due to
the generative nature of the model: Eqn. (2) computes the
activation of an input vector, and negative samples yielding
low activation values in this process are dissimilar to positive
prototypes (i.e., objects). Setting a threshold θbsp can identify
such samples in order to exclude them from further computa-
tions, i.e., classification and learning. This has two benefits:
first, the model only represents negative samples which are
very similar to objects. With minimum allocation of the



model’s resources to negative samples, more representational
resources (prototypes) can thus be allocated for representing
the object class. Secondly, the system can use its own output
directly during tests with annotated images without having
to crop and prepare negative samples beforehand.

The training schedule employed in experiments (see
Fig. 1) starts with positive bootstrapping for Tbsp+ iterations,
followed by fine tuning with positive samples for Tft+
iterations and finalized by negative bootstrapping for Tbsp−
iterations.

III. EXPERIMENTS

A. Setup and Parameters

Three different datasets are used in the experiments: as
a synthetic (source) dataset, the Virtual Pedestrian dataset
presented in [4] is used, whereas as real-world (target) ones
the KITTI Vision Benchmark Suite [5] and the Daimler
Mono Pedestrian Detection Benchmark Dataset [6] are used.
Additionally, sub-sets of the real-world datasets with smaller
number of positive samples are generated (samples are drawn
randomly from training sets) for the fine tuning process.
Negative samples are kept as they are since the negative boot-
strapping process seeps through these samples automatically.
Sample images from the datasets are shown in Fig. 3, and
the number of samples used in the experiments are shown
in Tab. I for each dataset. Experiments are conducted in the
following settings:
• Baseline: the model is trained and tested on the source

dataset.
• Baseline-Small: the model is trained and tested on a

smaller sub-set of the source dataset.
• Cross-Dataset: the model is trained on the source and

tested on a target dataset without the fine tuning process.
• Bootstrapping: the model is trained on the source dataset

and fine tuning is applied with the smaller sub-set of the
target dataset (see Sec. II-D). The test is done on the
target dataset.

The number of positive samples for the settings Baseline-
Small and Bootstrapping is set to 50. We use the following
fixed parameters for our system: the number of prototypes
in the hidden layer: M = 20 × 20 = 400, εO = 0.001,
σ0 = 6, ε∞ = 0.001, σ∞ = 1, T1 = 50000, Tconv =
150000, p = 20 and τ = 0.001. Both SOM and LR
weight matrices are initialized to random uniform values
between -0.001 and 0.001. Training examples are always
randomly and uniformly drawn from the current training
set. The Histograms of Oriented Gradients features extracted
from samples following [20] to be used as input vectors.
This method is chosen due to the availability of the feature
extraction framework however, any vectorized representation
of images can be used with the system. The number of
iterations is set to Tbsp+ = 500000, Tft+ = 300000 and
Tbsp− = 700000.

For comparison to the state of the art, a discriminative
approach is also implemented and evaluated to assess how
close training on the source (synthetic) dataset can get to

(a) Samples from the synthetic dataset [4]

(b) Samples from KITTI dataset [5]

(c) Samples from Daimler dataset [6]

Fig. 3: Representative samples from datasets used in exper-
iments

TABLE I: Number of samples used in experiments

Training Test
Positive Negative Positive Negative

Synthetic 1700 1000 716 2000
KITTI 1000 10000 532 4968
Daimler 5000 5000 10660 8488
KITTI-small 50 10000 N/A N/A
Daimler-small 50 5000 N/A N/A

training on target (real-world) datasets, and whether it is
feasible to be used as a basis for bootstrapping. We chose a
state-of-the-art boosting algorithm for the purpose, which is
widely used in discriminative object detection (see [21] for
a survey). Our implementation follows [22] with the number
of weak classifiers set to 1000 which are selected from a pool
generated using the aggregated channel features explained in
the paper.

B. Cross-Database Performance of Discriminative Models

Fig. 4 shows the performance of Adaboost classifiers
trained and tested on various datasets. Boosting-RonR is the
classifier trained and tested on KITTI dataset hence it serves
as a baseline for the real-world dataset. Similarly, Boosting-
SonS is trained and tested on source dataset and serves as
a baseline for this dataset. Boosting-SonR is the classifier
trained on the source dataset and tested on KITTI as a target
dataset. The results suggest that synthetic data has indeed



Fig. 4: Results of experiments with boosting. The legend
indicates training and test datasets in the form of Training-
on-Test. S and R refer to source and target (in this case
KITTI) datasets.

statistical drift with respect to the real-world one. However,
the extent of this drift is still below a margin that would
allow us to use the source dataset for positive bootstrapping
purposes. The results are also in accordance with [23] where
a similar study is done for a comparable synthetic dataset and
Daimler dataset using SVM classifiers.

C. Effects of Positive Bootstrapping

Firstly, we examine the performance of the system after
positive bootstrapping only. This corresponds to the state
of the models achieved after box 1 in Fig. 1 is processed.
Results shown in Fig. 5 indicate that already at this stage, it
is possible to filter out half of the negative samples and still
achieve around 1% of miss rate on both KITTI and Daimler
datasets. Adding the negative bootstrapping on top of this
(i.e., after both box 1 and box 2 in Fig. 1 are processed)
greatly reduces the amount of false positives as shown in
Fig. 6. The variation of false positive performance of the
proposed method is much less compared to discriminative
models (see Fig. 4) hence the axis is not plotted in the
log scale. Tab. II summarizes detection rates achieved after
the full bootstrapping process at constant operating points.
The model trained on the synthetic dataset yields varying
performance on target datasets (indicated as Cross-Database
performance). When applied to Daimler dataset, this model
can achieve a performance close to the setting Baseline-Small
whereas on KITTI, the performance is the lowest among
all. Bootstrapping improves the models in both cases: the
detection performance is increased from 62% to 82% on
KITTI and from 92% to 95% on Daimler. On both datasets,
the Bootstrapping setting can achieve better results than
Baseline-Small indicating that virtual dataset indeed provides
the models with a useful knowledge basis. Compared to
the baseline detectors, the bootstrapped models still deliver
inferior performance in both datasets. However, the gap is
only 2% on Daimler dataset whereas it is 12% on KITTI.
We can reduce this gap up to 6% if we move our point of

Fig. 5: Performance of the systems trained with only positive
bootstrapping (source and target) on KITTI and Daimler
datasets.

operation from 0.027 FPR to 0.035 FPR.

D. Effects of Negative Bootstrapping

As shown earlier, a generative model trained with only
positive samples can filter out ”easy” negative samples:
for a sample, if no similar prototype is found, the sample
can be regarded as negative. Hard negatives on the other
hand, are used in the training. This process is referred to
as negative bootstrapping. In order to analyze the effects
of negative bootstrapping, we keep track of the negative
samples that are rejected during the training process. For
both Daimler and KITTI datasets around 22% of the negative
samples are filtered out by the models during the whole
negative bootstrapping process. This is not to be confused
with the performance of the system where models are trained
with positive bootstrapping only (Fig. 5). During negative
bootstrapping, as hard negative samples are accepted by the
system the generative model starts building their explicit
representations (i.e., prototypes). As the training process
advances these prototypes accept more negative samples,
which similar to them, reducing the total number of negative
samples filtered out by the end of training. Fig. 7 shows some
examples of the accepted and skipped negative samples from
Daimler dataset. It can be noticed that the system not only
eliminates easy samples such as sky, but also samples with
texture. On the other hand, samples with high texture seem
to be included in the training process. These may generate
feature vectors that can confuse the models depending on
texture patterns e.g. specific constellation of tree branches
and leaves or shadows cast on the road surface.

IV. CONCLUSION

We present an object classification architecture that com-
bines generative and discriminative models facilitating in-
cremental learning. The main contribution of this work
is the utilization of the incremental learning approach for
bootstrapping of object classification models. Bootstrapping
is practised with both positive and negative samples. The



(a) KITTI dataset (b) Daimler dataset

Fig. 6: Performance of the systems trained under various settings.

TABLE II: Detection performance obtained in experiments

Detection Rate FPR
KITTI Baseline 0.94 0.027
KITTI Baseline-Small 0.87 0.027
Cross-Dataset (KITTI) 0.63 0.027
Bootstrapping (KITTI) 0.82 0.027
Daimler Baseline 0.97 0.015
Daimler Baseline-Small 0.91 0.015
Cross-Dataset (Daimler) 0.92 0.015
Bootstrapping (Daimler) 0.95 0.015

(a) Skipped negative samples

(b) Included negative samples

Fig. 7: Some of the negative samples included and excluded
by the system during training on Daimler dataset.

essence of positive bootstrapping is training the generative
model with positive samples from one dataset followed by
a fine tuning process with positive samples from another
dataset. The incremental learning capability of the system
allows to make local changes in the model hence, the
knowledge acquired from the first dataset is retained if it is
useful for the second and statistical properties of the second
dataset, which is not covered, is incorporated into the model
gracefully. The feasibility of the system is demonstrated
on pedestrian detection task. The positive bootstrapping is
employed with synthetic data from the synthetic Pedestrian
dataset and tested on a real-world dataset. It is possible to
further improve the performance to the baseline level via the
fine tuning step with only a few labeled examples from the
real-world dataset. This is especially useful for applications
where the amount of annotated data is limited. Cheaper and
more convenient synthetic data can be used to bootstrap the
models and state of the art performance can still be achieved.

In addition to positive bootstrapping, we also proposed
negative bootstrapping where the system can reject a portion
of negative samples using the internal object representations
built by positive training. Incremental learning yields the
benefit of updating only the parts of the model where the
positive/negative discrimination stays weak. In this case,
the representation of negative samples in the model is kept
at minimum, allowing more resources for positive samples
for a better object representation. This also eliminates the
necessity of employing conventional bootstrapping methods
where the models are initially trained with positive samples,
false positives are collected as hard negative samples via the
learned models and models are re-trained with positive and
hard negative samples. In the proposed approach, the system
is trained with positive and negative samples sequentially.
Initial training only with positive samples already builds
object representations and later at test stage only hard
negatives are determined by the system and incorporated in
the training. This property, combined with low computational
complexity of the models and GPU parallelization renders
relatively short training times. For the work presented, the



whole training process takes less than 30 minutes.
The presented architecture is generic and can be applied to

the detection of any other dynamic object such as vehicles,
traffic signs and traffic lights. The capability of the algorithm
to perform multi-class object classification is already pre-
sented in [3]. Bootstrapping multiple object representations
in a single model is one of the next steps to extend the
architecture.
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