
Computational advantages of deep
prototype-based learning

Thomas Hecht, Alexander Gepperth?

U2IS, FLOWERS team, INRIA, université Paris-Saclay
828 Blvd des Maréchaux, 91762 Palaiseau cedex, France

Abstract. We present a deep prototype-based learning architecture which
achieves a performance that is competitive to a conventional, shallow
prototype-based model but at a fraction of the computational cost, es-
pecially w.r.t. memory requirements. As prototype-based classification
and regression methods are typically plagued by the exploding number
of prototypes necessary to solve complex problems, this is an important
step towards efficient prototype-based classification and regression. We
demonstrate these claims by benchmarking our deep prototype-based
model on the well-known MNIST dataset.

Keywords: prototype-based learning, pattern recognition, deep learn-
ing, incremental learning

1 Introduction

This study is conducted in the field of prototype-based machine learning, and es-
pecially regarding the question how to render such machine learning approaches
more efficient w.r.t. memory consumption. In prototype-based learning, the prob-
ability distribution in data space is not expressed in parametric form but by a
learned set of samples, the so-called prototypes. Prototype-based machine learn-
ing methods were originally motivated by prototype theory from cognitive psy-
chology (see, e.g., [1]) which claims that semantic categories in the human mind
are represented by a set of ”most typical” examples (or prototypes) for these cat-
egories. Well-known prototype-based approaches are the learning vector quanti-
zation (LVQ) model [2], the RBF model [3] or the self-organizing map (SOM)
model [4]. A very popular prototype-based method in computer vision in is par-
ticle filtering [5], where a continuous, evolving probability density function is
described and updated as a set of prototypes (here denoted particles) whose
local density represents local probability density. Prototype-based methods are
well suited for incremental learning[6, 7] since prototypes have a very obvious
interpretation, and can thus be manipulated easily, e.g., by adding, adapting or
removing prototypes (see [8] for a precise definition of incremental learning).

? Thomas Hecht gratefully acknowledges funding support by the ”Direction Générale
de l’Armement” (DGA) and Ecole Polytechnique.

2 T.Hecht, A.Gepperth

Fig. 1: The hierarchical system used in this study, composed of one input layer, two
hidden layers and one top layer.

Prototype-based learning usually has a ”flat” architecture (such as the RBF
or the LVQ models) with one hidden layer between input and output, where hid-
den layer weights (the prototypes) describe the input distribution. An obvious
problem of such flat architectures is the curse of dimensionality: complex prob-
ability distributions in high-dimensional spaces may conceivably require a great
number of prototypes to be well approximated, so the memory requirements of
flat prototype-based learning can become excessive depending on the problem
at hand[9].

This study generalizes ”flat” prototype-based learning as presented in [7] to a
”deep” architecture (see Fig. 1), with localized receptive fields in the lower layers,
just as it is the case in convolutional neural networks (CNNs, see [10]). This
makes use of the probabilistic structure of images whose distant parts (receptive
fields) are often approximately independent. In this case, it is far more efficient
to model their distributions independently as well. If this is done by prototypes,
the curse of dimensionality is reversed: as the required number of prototypes can
increase exponentially with dimensionality, it can also decrease exponentially
since the dimension of receptive fields is small. In its simplest form, this comes
down to a deep four-layer architecture (see Fig. 1), where the first hidden layer
now contains prototype activities related to local descriptions of the input, which

Computational advantages of deep prototype-based learning 3

are subsequently integrated into a global representation in the second hidden
layer.

The goal of this study is to show that such a deep prototype-based classifier
can achieve a performance that is comparable to its flat counterpart but at
a dramatically reduced number of connection weights, which reduces memory
consumption and training time. For this purpose, we use the well-known MNIST
dataset [11] which is an accepted benchmark in the field of machine learning,
and offers the advantage of comparing the absolute performances of both flat
and deep architecture to the results of other methods on MNIST.

2 Methods

For representing both first and second hidden layers inputs of the architecture
shown in Fig. 1, we use a prototype-based learning algorithm which is loosely
based on the self-organizing map model, see [7]. Inputs are represented by graded
neural activities arranged in maps organized on a two-dimensional grid lattice.
Each unit (i, j) of the map X is associated with a weight vector wXij ∈WX which
is called prototype.

Each map of the Mh1 first hidden-layer maps has the same size N1 = nh1 ×
nh1 units and receives a crop from the system input data of size ncrop × ncrop.
Mh1 is determined by the size of non-overlapping receptive fields in the input
layer: the the smaller the receptive fields (each associated with a map in h1)
is, the greater is Mh1. The single map in the second hidden-layer h2, of size
nh2×nh2, receives a concatenation of activities in the Mh1 maps of h1. The top-
layer (output) consists of a linear regression module that computes the prediction
Wtop(t)T ·Zh2(t) of the system concerning its current input with Wtop the linear
regression factors and Zh2(t) the output activities of the second hidden-layer h2.

Because we wish to work in an on-line fashion, weights vectors of all layer are
updated at the same time (in contrast to conventional deep architectures which
require layer-wise training). Prototypes of the two hidden layers are updated
following the Kohonen rule. Each unit’s associated weight vector (its prototype)
is updated using the learning rule and good practices proposed by [4] which
decreases learning rate ε(t) and Gaussian neighborhood radius σ(t) from initially
large values to their asymptotic values ε∞, σ∞. For each iteration step t <= T ,
prototypes of maps (WX) are updated depending on the current input x with
the following rule :

WX(t+ 1)←WX(t) + ε(t) ·Φ(t) · (x(t)− wX?(t)) (1)

where ε is the learning rate and Φ(t) = φ(wX
?
(t), σ(t)) is a discretized Gaussian

kernel with σ variance, centered on the current best-matching wX
?

unit and
representing the neighborhood influence of the weights adaptation.

For any map X, the map activity zXij ∈ ZX at position (i, j) is then derived

from the Euclidean distance between the unit prototype wXij and the current
input x:

zXij (t) = f
(
gκ
(
||wXij (t)− x(t)||

))
(2)

4 T.Hecht, A.Gepperth

Fig. 2: An overview of prototypes in 4 maps of the first hidden layer h1 corresponding
to 2 × 2 receptive fields of 14 × 14 pixels over MNIST inputs.

where, as described in [7], gκ(·) is a Gaussian function with an adaptive param-
eter κ that converts distances into the [0, 1] interval, and f(·) is a monotonous
non-linear transfer function, defined as :

m0 = maxy z̄
P (y, t)

m1 = maxy

(
zP (y, t)

)20
f
(
(zP (y)

)
= m0

(
zP (y)

)20
m1

(3)

The top-layer weights vector is updated following an on-line stochastic gra-
dient descent mechanism with a fixed learning rate η over time by comparison of
its own prediction and the current ground truth label of the current input data.
Because we apply our system to classification tasks, labels y and predictions p
are not scalars but vectors of c values where the position of the maximum in-
dicates respectively the target class label and the system decision (population
coding).

Wtop(t+ 1)←Wtop(t)− η · (y(t)− p(t)) · Zh2(t) (4)

We use two indicators to assess performance: mean classification errors and
total number of connection weights.

Mean classification error This indicator is a commonly used measure for com-
paring performances of a classification system. During the testing phase, when all
the learning processes (i.e. weights updates) are stopped, classification errors are
logged on the MNIST test set following the simple rule : γ = 0. if argmax(y(t))
equals argmax(p(t)) and γ = 1. otherwise. Then, we just compute the mean for

all these errors µ = 1
T test ·

∑T test

t=1 γ.

Computational advantages of deep prototype-based learning 5

Total number of weighted connexions This indicator is a simple means to com-
pare our hierarchical architecture and a ”flat” architecture, only composed of
a huge map and a linear regression module, in terms of number of connexions.
Let Mh1 be the number of maps in the first hidden layer each composed of
N1 = nh1 ∗ nh1 units and Mh2 = 1 the number of maps in the second hidden
layer, composed of N2 = nh2 ∗nh2 units. Because connexions between the second
hidden layer and the top layer are negligible in the two architectures, we do not
take them into account. The total number of weighted connexions is then com-
puted as : K = N1∗(d+N2∗Mh1) for a hierarchical architecture and K̃ = d∗N2

for a ”flat” one. By example, an architecture with 4 hidden maps of 4× 4 units
receiving crops extracted from 784 pixels images (such as MNIST images), fol-
lowed by a hidden map of 10× 10 units followed by the linear regression module
gives K = (4×4)∗ (784+(10×10)∗4) = 18′944. For a comparable ”flat” system
without the first hidden layer, we would need K̃ = 784 ∗ (10 × 10) = 78′400
connexions.

3 Experiments

3.1 Protocol

Each experiment run consists of T train = 1′000′000 training iterations followed
by T test = 50′000 testing iterations. For all self-organizing maps, we use expo-
nentially decreased values of learning rate and neighbourhood radius and a fixed
linear regression learning rate : ε0 = 0.25, ε∞ = 0.001, σ0 = 0.5∗nX , σ∞ = 0.085
and η = 0.009. Both self-organizing maps and linear regression weight vectors
are initialized to random uniform values between −0.001 and 0.001. Samples are
always randomly and uniformly picked and are provided to the system as input
data x and ground truth y. Results presented below are averaged measures over
10 runs. Datasets targets are split into c different classes and each input data is
d dimensional.

We use the publicly available MNIST classification benchmark as described
in [11]. It contains c = 10 classes, corresponding to the 10 handwritten digits
from ”0” to ”9” and comes separated into a well-defined train set and a smaller
test set. Each sample has a dimensionality of d = 28× 28 = 784.

3.2 Results

As shown in Table 1, our hierarchical system with 4 hidden layer maps can
achieve comparable performances with less connexions involved. When compar-
ing mean classification errors in the hierarchical case (µ) and in the ”flat” one
(µ̃), it seems that, with respect to the same parameters set, there is no need to
add hidden layers. But when looking at the total number of weighted connexions,
K is always smaller than K̃ : by example, with Mh1 = 4 maps of N1 = 6 × 6
units in the first hidden layer and one map of N2 = 20 × 20 unit in the second
hidden layer, after T train on-line iterations the hierarchical system can achieve,

6 T.Hecht, A.Gepperth

in average, equivalent classification performances than a system only composed
of a single 20× 20 self-organizing map but with three times less connexions.

If we try with another number of hidden layer maps - by instance with
Mh1 = 16 and ncrop = 7 - it seems that performances drop down and that
the ratio K/K̃ is no longer a real advantage. Because we are dealing with raw
pixels and no extracted features on this dataset, the system is extremly sensible
to the size of the receptive fields. It seems to us that there is an interessant
research question about the well suited ncrop : what is the link with the dataset
distribution, are overlapping receptive fields a good idea or can the system adapt
itself this parameter during the incremental learning paradigm ?

Table 1: MNIST mean classification errors

ncrop = 14, Mh1 = 2 × 2

nh1 nh2 µ µ̃ K K̃

4 10 10.8 (±0.7) 9.1 (±0.5) 18’944 78’400
6 10 9.4 (±0.8) 9.1 (±0.5) 42’624 78’400
8 10 11.2 (±0.6) 9.1 (±0.5) 75’776 78’400

4 20 6.7 (±0.4) 6.3 (±0.6) 38’144 313’600
6 20 5.9 (±0.3) 6.3 (±0.6) 85’824 313’600
8 20 6.4 (±0.6) 6.3 (±0.6) 152’576 313’600

ncrop = 7, Mh1 = 4 × 4

nh1 nh2 µ µ̃ K K̃

4 10 12.9 (±0.9) 9.1 (±0.5) 38’144 78’400
6 10 11.1 (±0.8) 9.1 (±0.5) 85’824 78’400
8 10 11.0 (±0.9) 9.1 (±0.5) 152’576 78’400

4 20 10.5 (±0.6) 6.3 (±0.6) 114’944 313’600
6 20 10.1 (±0.5) 6.3 (±0.6) 258’624 313’600
8 20 10.8 (±0.5) 6.3 (±0.6) 459’776 313’600

4 Discussion, conclusion, perspectives

This article has shown that a deep prototype-based architecture is capable of
achieving performances comparable to those of a flat architecture of the same
type, while drastically reducing the number of connection weights, and therefore
memory usage and processing time. We believe that this effect may be observed
for any prototype-based method (notably LVQ) if approximatye independence
relations hold between separate parts of the input. As stated in Sec. 1, this is
almost always the case if inputs are visual images, although of course the right
parameters have to be found in the form of receptive field sizes and overlaps.
However to be fair, this parameter search would also have to be performed for
convolutional neural network (CNN) and is a property of all deep architectures
based on local receptive fields.

Computational advantages of deep prototype-based learning 7

Given that prototype-based methods in machine learning have a number of
highly desirable properties, such as online and incremental learning capacity [7,
6], a simple probabilistic interpretation [12] and a natural way of processing
multi-class problems, the reduction of resource requirements even when treating
complex visual problems seems an important step towards wide-spread use of
prototype-based machine learning methods.

References

1. E. Rosch. Cognitive reference points. Cognitive Psychology, 7, 1975.
2. M Biehl, A Ghosh, and B Hammer. Dynamics and generalization ability of lvq

algorithms.
3. J. Moody and C. J. Darken. Fast learning in networks of locally tuned processing

units. Neural Computation, 1, 1989.
4. T Kohonen. Self-organized formation of topologically correct feature maps. Biol.

Cybernet., 43:59–69, 1982.
5. M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tuto-

rial on particle filters for online nonlinear/non-gaussian bayesian tracking. Signal
Processing, IEEE Transactions on, 50(2):174–188, 2002.

6. Viktor Losing, Barbara Hammer, and Heiko Wersing. Interactive Online Learning
for Obstacle Classification on a Mobile Robot. IEEE, 2015.

7. A Gepperth and C Karaoguz. A bio-inspired incremental learning architecture for
applied perceptual problems. Cognitive Computation, 2015. accepted.

8. A Gepperth and B Hammer. Incremental learning algorithms and applications. In
European Sympoisum on Artificial Neural Networks (ESANN), 2016.

9. Brian Carse and Terence C. Fogarty. Parallel Problem Solving from Nature —
PPSN IV: International Conference on Evolutionary Computation — The 4th In-
ternational Conference on Parallel Problem Solving from Nature Berlin, Germany,
September 22–26, 1996 Proceedings, chapter Tackling the “curse of dimensionality”
of radial basis functional neural networks using a genetic algorithm, pages 707–719.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

10. Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala, and Yann LeCun. Pedes-
trian detection with unsupervised multi-stage feature learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 3626–
3633, 2013.

11. Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

12. Petra Schneider, Michael Biehl, and Barbara Hammer. Hyperparameter learning in
probabilistic prototype-based models. Neurocomputing, 73(79):1117 – 1124, 2010.
Advances in Computational Intelligence and Learning17th European Symposium
on Artificial Neural Networks 200917th European Symposium on Artificial Neural
Networks 2009.

