
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 1

Predicting Network Flow Characteristics using
Deep Learning and Real-World Network Traffic

Christoph Hardegen∗, Benedikt Pfülb∗, Sebastian Rieger and Alexander Gepperth
Department of Applied Computer Science, Fulda University of Applied Sciences, Germany

Email: {christoph.hardegen,benedikt.pfuelb,sebastian.rieger,alexander.gepperth}@cs.hs-fulda.de

Abstract—We present a processing pipeline for flow-based traf-
fic classification using a machine learning component leveraging
Deep Neural Networks (DNNs). The system is trained to predict
likely characteristics of real-world traffic flows from a campus
network ahead of time, e.g., a flow’s throughput or duration.
Training and evaluation of DNN models are continuously per-
formed on a flow data stream collected from a university data
center. Instead of the common binary classification into “mice”
and “elephant” (throughput) or “short-term” and “long-term”
(duration) flows, predicted flow characteristics are quantized
into three classes. Various communication contexts (subset of
network traffic, e.g., only TCP) and flow feature groups (subset
of flow features, e.g., only a flow’s 5-tuple), which are supported
through an enrichment strategy, are considered and investigated.
An in-depth description of the data acquisition process, including
preprocessing steps and anonymization used to protect sensitive
information, is given. Additionally, we employ an accelerated
variant of t-distributed Stochastic Neighbor Embedding (t-SNE)
to visualize network traffic data. This enables the understanding
of traffic characteristics and relations between communication
flows at a glance. Furthermore, possible use-cases and a high-
level architecture for flow-based routing scenarios utilizing the
developed pipeline are proposed.

Index Terms—Traffic Engineering, Network Management,
Flow Prediction, Machine Learning, Deep Learning, NetFlow

I. INTRODUCTION

TRAFFIC ENGINEERING has been an ongoing research
field since the early days of computer networks [?], [?].

Recent advancements in machine learning (ML) have led to
approaches that improve network and service management,
e.g., using traffic forecasting [?], [?]. These include the predic-
tion of traffic characteristics for efficient routing as well as load
balancing, e.g., based on Equal-Cost Multipath (ECMP) [?].
A significant effort has been put in the classification of
“mice” and “elephant” network flows to allow for an even link
utilization [?]. The same applies to the differentiation between
“short-term” and “long-term” flows [?]. As considered in [?]
and [?], we specify a flow as metadata describing a stream
of packets (≥ 1) that belongs to a coherent communication
between a given source and destination system.

1) Problem Statement: In a classical routing scenario, the
destination IP address only is used to select a link or path to
forward a flow’s packets. As a consequence, no “intelligent”
routing is possible because the average traffic a flow will pro-
duce for a finite duration is not known a priori. Additionally,
flows cause different traffic volumes and have varying dura-
tions. Hence, the following question arises: How precise can
∗Both authors contributed equally to this work.

different flow characteristics be predicted by DNNs within the
scope of various communication contexts and feature groups?
The forecast results can be used for traffic engineering, e.g.,
predictive flow routing to tackle the disadvantages of state-of-
the-art routing. The problem is significant for future commu-
nication networks because increasing traffic volumes have to
be distributed across available network resources efficiently.
Otherwise, the capacities are unevenly loaded and flows are
negatively affected, e.g., regarding throughput or latency.

Because flows typically have to be forwarded over the same
path during their lifetime, reactive load distribution across
multiple paths is challenging. For example, this requirement
is caused by stateful network components like firewalls and
middleboxes [?], [?]. Thus, a proactive and forecasting-based
solution that enhances traffic engineering, which is not limited
to destination-based forwarding, is required. This could, for
example, include Software-Defined Networking (SDN) [?]
techniques that can be deployed to enable a fine-grained traffic
steering based on the prediction of flow characteristics.

In order to improve traffic engineering, we apply DNNs
to an application-oriented scenario, in which dynamic flow
information of a real-world campus network is forecasted. Two
scenarios clarify related challenges and motivate our work:

a) Example 1: Using only a single optimal path, e.g.,
the shortest one, can result in a high load or congestion.
While alternative paths with higher costs but less load exist,
individual flows are negatively influenced by the high load on
the shortest path. This can lead to high latency, packet loss
and low throughput (flow-level metrics) experienced by the
applications, i.e., Quality of Experience. In addition, available
links and paths, respectively, are unequally utilized, leading to
a high Maximum Link Utilization (MLU) or Maximum Path
Utilization (MPU), as well as a low and unbalanced average
load (topology-level metrics) of the entire topology.

Figure 1 shows an example with three paths between routers
R1 and R7. Path P1 = (R1, R2, R7) with three router hops is the
shortest one. P2 = (R1, R3, R4, R7) and P3 = (R1, R5, R6, R7) are
two alternatives with four hops. In a classic routing scenario,
P1 will be preferred over P2 and P3. Each path has a capacity

Fig. 1: Congestion on a single shortest path.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 2

of 100%. Three load levels are distinguished: low (<10%,
green), medium (10 - 90%, orange) and high (>90%, red).
There are three flows f1, f2 and f3 with given bit rate levels
B(fx) that need to be routed from R1 to R7: B(f1) = B(f3) =40%,
B(f2) = 30%. Forwarding all over the optimal path leads to
a theoretical path load of L(P1) = 110% and results in a
congestion on P1 (L(P1)> 100%), while the full capacity is
available on both alternatives with L(P2) = L(P3) = 0%.

b) Example 2: Multiple paths with equal costs have to
be shared equally to avoid unequal utilization. This is, for
instance, challenging in ECMP-based load balancing tech-
niques that use flow-based hashing or round robin. An uneven
distribution of traffic loads across available paths can lead to a
high MLU/MPU. Depending on the throughput of individual
flows, an unequal distribution can cause a high load on one of
the equal-cost paths. This results in, e.g., high latency, packet
loss or a low throughput for flows and for the entire topology.

An example with two simple paths of equal costs (three
hops) between the routers R1 and R4 is given in Figure 2. The
paths P1 = (R1, R2, R4) and P2 = (R1, R3, R4) have a uniform
capacity of 100%. Four flows need to be forwarded from

Fig. 2: Unequal utilization of multiple paths with equal cost.

R1 to R4 and have the following throughput requirements:
B(f1) = B(f2) = 55% and B(f3) = B(f4) = 5%. Routing f1 and f2
over P1 and forwarding f3 and f4 via P2 leads to an unequal
utilization. While P1 is under heavy load with theoretically
L(P1) = 110%, whereby f1 and f2 may be exposed to the men-
tioned negative impacts, P2 is less loaded with L(P2) = 10%.

2) Contributions: In this article, we propose a flow data
stream pipeline to train and deploy a deep learning based pre-
diction model for the forecasting of several network flow char-
acteristics, i.e., bit rate, duration and number of bytes/packets.
Compared to existing traffic classification mechanisms, e.g.,
distinguishing mice from elephant flows [?] or short-term from
long-lasting flows [?], we introduce a flow feature estimation
categorized into multiple traffic classes. This allows for a more
fine-grained traffic engineering/steering of network flows.

Traffic characteristics are highly variable, e.g., with respect
to the environment and size of the network [?]. For instance,
the amount of traffic fluctuates over time, and spikes usually
occur. Therefore, a key challenge in our work is to obtain
realistic network traffic characteristics to be used as input
for an ML model. Consequently, a systematic collection of
network traffic metadata was conducted in our university cam-
pus network. We provide insights into the network topology,
traffic data and the used experimental environment. Various
communication levels and groups of flow characteristics are
investigated to evaluate the prediction of individual flow
metadata in different contexts. In order to address gradual
changes of collected traffic characteristics, i.e., concept drift,
we use a stream processing approach over consecutive time
intervals to achieve continuous learning and adaption of the

ML model. This setting requires an efficient implementation
of the processing pipeline to keep up with the stream of
flow data. Privacy is a further obstacle to process flow data
and to obtain a realistic dataset. Flows contain IP addresses,
which can be viewed as sensitive information. Accordingly,
anonymized flow data is used at all processing stages in the
proposed pipeline to ensure privacy protection.
This journal article is an extended version of the conference
paper “Flow-based Throughput Prediction using Deep Learn-
ing and Real-World Network Traffic” from the Conference on
Network and Service Management (CNSM) 2019 [?].

a) Main Contributions of the CNSM Paper:
• We perform multi-class training and prediction of a flow’s

bit rate using DNNs working in a streaming setup.
• We give insights into the process of collecting real-world

flow data and apply t-SNE as a visualization technique.
• We provide a dataset (525 million flows) collected during

one week and the code for our flow data stream pipeline.
b) Extended Contributions of this Article:

• We extend our investigations with regard to various flow
communication contexts, e.g., only TCP, and feature groups,
e.g., 5-tuple, while considering different flow characteristics
as labels, e.g., duration.

• The class boundaries for each prediction experiment are
estimated automatically by equal frequency binning.

• We reorganize the flow data stream pipeline and give more
insights on its implementation1 and the experimental setup.

• We validate our research from the CNSM paper as we
collected a new dataset and obtained similar results. An
optimized t-SNE implementation is used to analyse 10 000
instead of only 1 000 flow data samples at a glance.

• We investigate the influence of an exporter misbehaviour on
the prediction results by comparing the results with those of
using an alternative exporter.

• We discover accuracy instabilities observed when using the
Adam optimizer, which do not exist when using vanilla
Stochastic Gradient Descent for DNN models in the context
of continuous learning on flow data.

• We present exemplary scenarios, in which the use of pre-
dicted flow characteristics results in an optimized flow rout-
ing. Additionally, a more detailed overview of a distributed
and centralized approach are given.

c) Summarized Main Findings:
• The validity of the CNSM paper is reconfirmed by conduct-

ing additional streaming experiments.
• Forecasting different flow characteristics for streamed flow

data is feasible with DNNs.
• The prediction accuracies depend on the considered com-

munication context, feature group and the selected label.

II. RELATED WORK

A survey of techniques for traffic classification using ML
is given in [?], [?], [?] and [?]. An example for using ML
to classify flows and their throughput in simulated data center
networks is presented in [?]. In contrast to simulated traffic,

1https://gitlab.cs.hs-fulda.de/flow-data-ml

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 3

flow characteristics in real-world networks are often fluctuat-
ing and complex [?]. Other techniques for ML-based routing
can be found in [?]. [?] presents an SDN-based adaptive
traffic engineering framework. Both papers focus on only two
traffic classes (mice and elephant). An approach that proposes
the use of deep reinforcement learning on synthetic network
traffic for routing can be found in [?]. [?] introduces the
combination of learning from existing Dijkstra-based routing
algorithms and imitating them with higher performance using
a dynamic routing framework for SDN to optimize network
throughput for simulated data. A solution with supervised deep
learning for routing decisions based on real traffic demands
is presented in [?]. The model uses aggregated known traffic
demands as an input to optimize the overall path utilization. [?]
analyzes real-world network flows captured from a university
campus network. Thereby, the prevalence of small flows and
the classification of features is discussed and the importance
of data collection in real networks is emphasized.

The relevance of deep learning based traffic classification
and prediction in SDN is explained in [?]. Traffic analysis
and routing optimization with deep learning are explicitly
named as major future research problems. This is also sup-
ported by the necessary shift from rule-based network traffic
control to mechanisms using artificial intelligence (AI), e.g.,
due to steadily increasing traffic volumes [?]. [?] argues
that a network AI can be used to predict future network
traffic from past data to evolve network management and
automation. Using a network AI, [?], [?] and [?] focus on
intelligent traffic routing for aggregated traffic characteristics
and improved network analytics. For verification, prediction
models can be cross-checked, e.g., with existing evaluations
of the interpretability of deep learning models used in the
area of computer networks [?]. An option is generative replay,
whereby generated characteristic traffic is combined with prior
data to ensure the adaptability of the prediction model [?].

As proposed for knowledge-defined networking [?] or cog-
nitive network management [?], our approach can be combined
with SDN [?] and Virtual Network Functions [?].

Main differences between this article and related works are:
• multi-class instead of binary classification
• real-world compared to synthetic network data
• flow-level instead of aggregated path data
• stream compared to batch processing
• early prediction based on first packet features
• consideration of communication contexts and feature subsets
• discussion of use-cases for improved flow routing

III. FLOW DATA STREAM PIPELINE

The flow data stream pipeline (Figure 3) performs data
collection and preparation as well as learning from flow data.

A. Data Collection

Data collection takes place in a real-world production net-
work at Fulda University of Applied Sciences.

a) Network Architecture: The campus network covers
faculty as well as teaching facilities (about 30 buildings) and
hence connects several subnets from the data center, laborato-
ries, researchers, administration (about 600) and also students
(about 10 000; primarily WiFi). It is designed according to
the core-distribution-access model, in which each building
represents an element in the distribution layer, being connected
to two core routers as shown in Figure 4. Two data centers are
also connected to the core layer, providing central IT services.
This architecture allows us to export traffic metadata from both

Internet

Core Distribution

Building

Data Center

Access

CatM

CatE

... ...NetFlow
Collector

Fig. 4: Network and NetFlow collection infrastructure.

central core routers using the NetFlow protocol, catching WiFi,
data center, internal and external traffic, except for packets that
are routed within the distribution layer.

The Cisco Catalyst platform is used for the entire network.
At the core layer, two Cisco Catalyst 6509-E switches in
Virtual Switching System mode build the primary router in
building E (CatE), while a Cisco Catalyst 4500 switch is
available for redundancy in building M (CatM). All devices
are capable of exporting Cisco Flexible NetFlow [?][?].

b) Flow Export: Flow information for all application
protocols is continuously exported by two core routers. As
both devices connect most of the campus infrastructure, traffic
includes a variety of realistic patterns. This traffic may be
affected by constraints (e.g., QoS policies) that are reflected
in exported flow data. A configured flow record selects flows
to export based on a set of matching criteria, i.e., the 5-tuple
(source/destination IP address, source/destination port, pro-
tocol). Collect criteria are added to flows before they get
exported to the collector. This metadata consists of timestamps
for a flow’s start and end time, the number of packets/bytes
transmitted and a union of all observed TCP flags. A defined
flow monitor references the flow record and the configured
flow collector. Timeouts ensure that data is either exported at
periodic intervals (longer lasting flows) or after inactivity. An
active timeout of 600 s and an inactive one of 30 s are used.

Flow records are exported only for ingress traffic to avoid
duplicated exports from one router. The collector handles
∅ ≈2 000 flow records per second. Only unicast flows are

Fig. 3: Flow data stream pipeline.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 4

considered. Since the proportion of multicast traffic is quite
low in our network and it does not offer the same feature
variety as unicast traffic, multicasts and broadcasts are filtered.

Depending on the switches, a flow can pass through both
routers. As both devices export flows, the same data is poten-
tially collected multiple times. Duplicated flows are filtered out
and only unique records are further processed (Section III-B1).

In general, there is considerably more work-time network
usage but a certain traffic level remains at night. In order to
get an examplary overview on the traffic volume within the
considered network as well as on the trend of the flow cache
sizes and the number of flow records exported per second for
a complete week, we refer to our CNSM paper [?].

c) Misbehavior of the NetFlow Exporter: While all gen-
erated and retraced flows [?] were correctly exported by the
core switches in various tests, during data collection some
flows were affected by a misbehavior of the NetFlow exporter.
These flows had a faulty duration, i.e., the NetFlow inactive
timeout was added to the flows’ duration. For example, there
were some flow records specifying only one exchanged packet
but a duration of nearly the inactive timeout. The problem
may be related to flow inactivity management. Though no
significant switch load was monitored during the flow export
and the issue was observed for different times and communi-
cation contexts. After detecting the issue and trying different
configurations for the Cisco exporter, the NetFlow exporter
nprobe [?] was connected to a packet mirror configured on
CatE (Figure 5) to investigate the error in the exporter. Due
to the potentially critical impact on the network, the packet
mirror extracted only WiFi traffic based on VLAN tags.

NetFlow
Exporter

NetFlow CollectorCatE

Packet
Mirror

WiFi

Access
Point

Fig. 5: Setup for mirroring WiFi traffic.

Flow data was collected by each exporter for one work
day (8 h). The analysis of both datasets states slight differ-
ences regarding the data distribution of a flow’s duration and
throughput. As the distribution is comparable, the impact on
our experiments is exemplarily investigated by predicting the
bit rate. We trained two DNNs with identical parameters on
each dataset and evaluated the results (Figure 6).

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

date

0

50

100

ac
cu

ra
cy

in
%

Cisco Exporter
mean = 67.5

nProbe Exporter
mean = 71.1

Fig. 6: Accuracy comparison for different flow exporters.

Since the accuracy trends for both experiments show only
minor deviations, the influence of the exporter’s misbehavior
is negligible. Moreover, our focus remained on collecting such
realistic traffic data from a real-world network.

Another issue concerns flow timestamps. The exporter re-
ported a higher timestamp for the first compared to the last

packet, resulting in negative durations. Out of ≈480 million
flows collected during a week (2019-12-02 15:00 to 2019-12-
09 15:00), ≈15 000 records distributed over a continuous time
interval are affected. As the proportion of involved flows is
small, the impact on subsequent steps is assumed to be low.

The described exporter issues show that the collection and
preparation of real-world flow data is a major issue since it
requires an understanding of the flow exporter’s behavior. In
general, a misbehavior of an exporter directly influences the
quality of collected data but the experiments show that the
effect on the prediction results is neglectable.

B. Data Preparation

After receiving a collection of about 100 000 flow records
(block), data preparation is initiated. To prepare flow informa-
tion for the training performed in the ML module, several op-
erations (see below) are applied to each block of flow records.
Most steps of the data preparation are executed by a central
flow data streaming server that multiple flow data streaming
clients can connect to. Several clients can implement various
experiments, e.g., different learning techniques. The streaming
server is responsible for data aggregation, enrichment and
anonymization. Additionally, the collected and preprocessed
data is stored as an offline dataset. The streaming clients filter
and select flow data, before class labeling and normalization
are performed (Figure 3). All data preparation operations
are parallelized on both, server- and client-side. Therefore,
each block is temporarily divided into data chunks that are
processed independently of each other.

1) Data Aggregation: One flow record might not describe
a complete communication because of exporter configurations
or hardware limitations (i.e., timeouts or cache sizes). To
obtain flow entries that represent an entire communication,
flow records are aggregated block-wise. The applied method
is based on a flow’s 5-tuple, timestamps and flags. Flow
properties like timestamps, duration, number of packets and
bytes as well as bit rate are updated. Because of the timestamp
resolution (50ms steps), the bit rate for short-term flows (du-
ration <1ms) cannot be calculated and is set to 0 (∅ ≈17 000
records per block). On average ≈20 000 records per block de-
scribe communications with only 1 packet (duration=0ms).
Records that cannot be aggregated are dropped (∅ ≈2 500
records per block). Duplicate flow records from exporters
in both switches are filtered based on their first occurrence
(∅ ≈4 200 records per block). Aggregation and filtering of a
block reduces ≈100 000 records to ∅ ≈75 000 entries.

2) Data Enrichment: Each flow entry is enriched with
additional metadata that is extracted from the local and global
network context (e.g., private/public prefixes, VLANs, ASNs),
depending on a flow’s source and destination IP address.
IP address management system exports as well as a lookup
service [?] are used as data sources. Data enrichment aims at
enhancing the prediction accuracy and enables the considera-
tion of different communication contexts and levels.

3) Data Anonymization: To ensure privacy protection, an
anonymization of IP and network addresses is performed.
Address octets are substituted using individual substitution ta-
bles, which are permuted based on a cryptographically hashed

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 5

password (seed) defined by the data center. This ensures that
the semantics of addresses are kept apart from their adjacency.
On the one hand, the strategy preserves relationships between
IP addresses and their subnets. On the other hand, relations
between neighbored IP addresses or subnets are not retained.

4) Data Filtering: The filtering of data allows to exclude
flows that match a set of prespecified conditions for available
flow features. Feature filtering enables the extraction of sub-
datasets from the flow data stream, e.g., for individual exper-
iments. For example, in order to keep only TCP traffic, other
flows are skipped based on the transport protocol. Thus, the
data filtering stage allows to reduce the number of flows.

5) Data Selection: The selection of one or more flow
features supports the consideration of various feature com-
binations. Again, feature selection enables the extraction of
sub-datasets from the flow data stream. For example, to retain
only a flow’s 5-tuple, the IP addresses, ports and the transport
protocol are selected. Hence, the data selection stage allows
to decrease the number of features for all flows.

6) Data Labeling: Each flow is assigned a class using
predefined boundaries for the selected flow property. Flow
properties that merit being predicted by the model are referred
to as class labels. The number of bytes and packets as well
as a flow’s duration and bit rate are supported. Labels are de-
termined during data collection or updated in the aggregation
stage and afterwards transformed into the one-hot format.

7) Data Normalization: To feed the model (e.g., DNNs)
with suitable inputs, normalization and data format transfor-
mation are performed. The latter includes the replacement
of dynamically chosen ports ≥ 215 by 0 and the splitting of
timestamps. The normalization supports three formats: float,
bit pattern, one-hot (e.g., Table I). The float normalization
(min-max normalization) maps a single value to a predefined
interval, e.g., [0.0, 1.0]. Methods like bit pattern and one-
hot avoid the representation of numerical proximity, which is
important for, e.g., IP addresses. The latter method transforms
each categorical value to a bit pattern with a single 1.

TABLE I: Normalization and transformation examples.
Feature Raw Data Data Type Output Data
IP address 81.169.238.182 Float 0.317, 0.662, 0.933, 0.713
Protocol 6 Bit pattern 0, 0, 0, 0, 0, 1, 1, 0
Locality Private | Public One-hot 0, 1 | 1, 0

An overview of the features in the data stream that results
from the data preparation stage is given in Table II. The size of
the output vector is stated for each feature. Data transformation
types marked in gray are used for the experiments. The origin
(Src) of each feature can be identified and features for which
there is both a source and a destination are marked with �.

TABLE II: Features in the data stream.
Feature Data Format Src Feature Data Format SrcFloat Bit One-hot Float Bit One-hot
month 1 4 12

D
at

a
C

ol
le

ct
io

n

network � 4 32 7

D
at

a
E

nr
ic

hm
en

tday 1 5 31 prefix len � 1 5 7
hour 1 5 24 ASN � 1 16 7
minute 1 6 60 longitude � 1 7 7
second 1 6 60 latitude � 1 7 7
protocol 1 8 7 country code � 1 8 240
IP address � 4 32 7 VLAN � 1 12 7
port � 1 16 7 locality � 1 1 2

C. Machine Learning

This module implements the training and inference stages.
Various online and offline (i.e., not operating on live data
streams) experiments can be performed to evaluate the validity
of different ML models, their hyper-parameters and data
normalization or enrichment strategies. When doing so, either
for model training or inference, the prepared flow data is
always processed in a block-wise manner. A (chronologically
ordered) block is split into a training and test set, both of which
are individually shuffled to preserve the chronological order of
flow data. The machine learning stage outputs the predictions
of the trained ML model for individual flow communications.

D. Data Flow of Network Flow Data

The data flow diagram in Figure 7 depicts the processing of
flow data on Flow Data Stream Server and Clients. Exported
flows from multiple exporters are collected by the NetFlow
Collector until an entire block has been received. Each block
of 100 000 Flow Records is processed by the Flow Processor
that splits a block into multiple chunks containing a subset of
all flows and passes each chunk to one of n Flow Processors
performing aggregation, enrichment and anonymization. The
number of processing units n depends on the available CPU
cores. Splitted blocks of flow records have to be processed
in parallel to ensure that processing ends before a new
block is available. Preprocessed chunks of Flow Entries are
recombined to a block, which is compressed and transferred
to connected Flow Data Stream Clients by the Connection
Handler. Raw and preprocessed data can be exported to files,
either for offline analysis or reproducible experiments.

Flow Data Stream Server

Flow
Processor

Compressed Block

File Export

Flow Entries

Flow Records
n Flow

Processors
aggregation

anonymization
enrichment

Flow Data Stream Clients
Flows

DNN Inputs
Flow

Processor

FC-DNN
Client

Training/Test Dataset

m Flow
Processors
filtering

labeling
normalization

selection

Connection
Handler

Exported Flows

NetFlow
Collector

Block
Flow Records

Stream
Handler

Decompressed
Block

File Export

Block
Flow

Entries

Fig. 7: Data flow diagram of network flow data.

On the Flow Data Stream Client side, the Stream Handler
is responsible for decompressing a received block and passing
the flow data to the Flow Processor. Again, the Flows are
split into chunks and processed by m Flow Processors, while
the number m depends on the available client hardware. Each
Flow Processor applies a feature filter and selector, as well
as a normalization and labeling function. Finally, the resulting
data chunks are reconstructed into a block of suitable DNN
Inputs, and then split into chronologically ordered Training
and Test Datasets, which are individually shuffled and passed
to the depicted FC-DNN Client (fully-connected DNN). The
datasets and evaluation results can be exported to files.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 6

This architecture supports a simultaneous evaluation of
multiple machine learning models on a data stream. As data
collection and most parts of data preparation are performed
on the server-side, the models can be implemented on the
client. Additionally, our streaming solution can replay a stored
dataset, either with raw or preprocessed flow data.

The flow data stream pipeline supports the processing of
exported IPv4 flows. In order to add support for IPv6 flows,
only IP address operations in the affected pipeline stages need
to be modified (128 instead of 32 bit). The same statement
applies to ASN numbers (4 instead of 2 bytes) or the value
range of other supported features in the flow data stream.

All pipeline stages have varying but constant runtime com-
plexities that depend on the block size. In order to guarantee
real-time capability, a block has to be processed faster than
the subsequent one is collected. The latter is influenced by
existing network conditions, i.e., number of flows per second,
and available computational resources.

IV. TRAFFIC ANALYSIS EXPERIMENTS

Unless stated otherwise, we selected aggregated flow entries
from block 1340 (2019-12-03 at about 14:00) out of a stored
reference dataset2 for traffic analysis. The dataset contains
about 6 800 blocks with overall ≈480 million flow entries
collected for a continuous week (2019-12-02 15:00 to 2019-
12-09 15:00). The data distribution was investigated based on
chosen flow labels. Structural patterns within the flow data
are visualized, while only the first 10 000 flow entries of the
selected block are used. Variations were present for previous
or following blocks, but the trend remained unchanged when
considering day and night time separately. Both steps help to
provide a better understanding of the data.

In order to verify the operation of each stage in the flow
data stream pipeline, intended network traffic was generated
and retraced in exported flow data. For example, we performed
various downloads and compared the results with obtained
flow information, e.g., a flow’s duration and throughput. This
is described in more detail in our previous work [?].

A. Label-based Data Distribution

Figure 8 outlines the data distribution within the complete
selected block for each flow label. While respecting the
observed value range, the histograms summarize data in 25
bins. Most flow communications are active for a relatively
short time (Figure 8a) and/or transmit very few data while
being active (Figure 8b). The same findings apply to the
observed number of transferred bytes and packets (Figures 8c
and 8d), which are both relatively small.

Flow data is unevenly distributed, which is clarified by
the median values (Figure 8). As the number of classes and
the related definition of boundaries used to label each flow
depends on the observed data, a suitable determination is
challenging. While having more than two classes, using three
classes allows for an approximate even number of samples
per class. In order to preestimate the boundaries for different

2The dataset is available upon request.

0 200 400 600

100
101
102
103
104
105

fr
eq

u
en

cy Median < 1

(a) duration in seconds

0 50 100 150 200

100
101
102
103
104
105

fr
eq

u
en

cy Median: 0.006

(b) bit rate in Mbit/sec

0 20M 40M 60M

100
101
102
103
104
105

fr
eq

u
en

cy Median: 156

(c) number of bytes

0 40 k 80 k 120 k 160 k

100
101
102
103
104
105

fr
eq

u
en

cy Median: 2

(d) number of packets
Fig. 8: Histograms of a block for all flow labels (log scale).

experiments with varying data distributions, an equal-depth
frequency partitioning method (equal frequency binning) –
smoothed by a bin’s min. and max. value – is applied.
Resulting boundaries ensure the best possible even distribution
for each class, which is appropriate for DNN training, even
though they have to be adapted for practical application.

Figure 9 illustrates the trend of the class distribution across
all dataset blocks. A flow’s bit rate is exemplarily used as
label. The class boundaries are predetermined (in bit/sec)
according to the above mentioned strategy: class 0 = [0, 4169[,
class 1 = [4169, 12 288[, class 2 =[12 288, ∞]. While the pro-
portion for each class remains approximately the same, there
are minor deviations for individual classes. Additionally, class
weighting methods are applied to address an imbalanced
number of elements per class for training.

12-03
Tue

12-04
Wed

12-05
Thu

12-06
Fri

12-07
Sat

12-08
Sun

12-09
Mon

date

0

50 k

100 k

fl
ow

en
tr

ie
s

all class 0 class 1 class 2

Fig. 9: Class distribution for all blocks of the dataset.

B. Structural Data Patterns

To discover and visualize structural patterns, we use
t-SNE [?], which is based on an Euclidean distance metric
and performs dimensionality reduction by mapping high-
dimensional data to a lower space (2D) while preserving
neighborhood relations as much as possible. To apply t-SNE
on a block with adequate computational time, an optimized
tree-based approximation [?] is used. Figures 10 to 12 share
the same output for 10 000 flows with different context-related
tags. Similarities are indicated by the relative distance between
sample points, but absolute point positions are meaningless.

The differentiation of flow entries based on the transport
protocol is shown in Figure 10. 85.5% of the flow samples
belong to UDP and 13.5% to TCP traffic. The remaining
proportion of 1.0% describes communications using other
protocols like ICMP. For each transport protocol, there are
multiple accumulations of samples indicating feature similari-
ties. Symmetric spots for each accumulation can be identified.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 7

TCP UDP other

Fig. 10: Transport protocol-based tagging of the t-SNE results.

Figure 11 depicts the tagging of each data sample according
to the communications’ localities. Four communication types
are distinguished based on the source and destination localities.
3.4% of the 10 000 flow entries are related to communications
between private systems, the other 96.6% involve at least one
publicly addressed system (i.e., communication to or from
the Internet). While 25.2% of the flows describe communica-
tions between publicly addressed systems, 36.6% respectively
34.8% belong to communications between an internal and
external system. Again, symmetric accumulations for each
communication type are visible. Considering the context of
localities, symmetric spots within the t-SNE visualizations are
related to different communication directions, i.e., belonging
to the same session or conversation. WiFi traffic (46.3%) is
separately marked and strengthens this fact.

WiFi

WiFi

Fig. 11: Locality-based tagging of the t-SNE results.

The tagging of the t-SNE output with symmetric accu-
mulations based on the application protocol is delineated
in Figure 12. With 79.8%, most of the flow entries are
DNS traffic, which is interrelated to the huge proportion of
UDP flows (Figure 10). 13.2% of the flow entries belong
to HTTP(S) traffic and another 7.0% to other application
protocols, e.g., SNMP, LDAP, SMTP.

HTTP(S) DNS other

Fig. 12: Application-based tagging of the t-SNE results.

According to the accumulations of individual data samples
and their symmetric pair spots, the t-SNE results show feature
similarities for several flow entries. The context-based tagging
helps to clarify the existing structural patterns in the data.

Besides the fact that almost every communication requires
a domain name lookup, the reason for the huge proportion

of flow communications that are related to DNS lies in the
network architecture and the protocol operation of DNS itself.
Requests sent to the internal DNS resolver and those addressed
to external DNS servers pass through the central network
devices that export flow data. External requests also include
queries that cannot be handled by the local DNS resolver.
Hence, they are externally forwarded. Flows that describe
DNS communications normally have either one exchanged
packet or both a small number of transferred bytes and a
short duration (short-term). While ≈70% of all flows belong
to DNS, their volumetric proportion is small (Table VI). Thus,
these flows and similar ones can be excluded as the prediction
is practically not relevant.

V. FLOW PREDICTION EXPERIMENTS

Subsequently, insights into the experimental setup are given
and the results of our streaming experiments are presented.

A. Experimental Setup

In order to perform 240 prediction experiments on the
stream of flow data that last for one week, experiments are
conducted simultaneously by about 180 computational nodes
with different hardware specifications (Table III).

TABLE III: Used computational resources.
GPU Type CUDA Memory Clocking CPU RAM

Cores (GB) (MHz) (#×GHz) (GB)
1 TITAN Xp 3840 12 1582 24× 2.3 64
1 GTX 1080 Ti 3584 11 1480 24× 2.3 64
9 RTX 2080 2944 8 1515 8× 3.4 16
2 GTX 980 Ti 2816 6 1000 24× 2.3 64

20 Quadro P5000 2560 16 1600 16× 3.2 32
40 RTX 2060 Super 2176 8 1470 8× 3.6 16
20 Quadro K2200 640 4 1046 24× 2.4 32
90 Quadro P620 512 2 1354 16× 3.6 48

Since static DNN models are used the GPU memory usage
is constant for all trained models (about 400MB). As GPU
utilization depends on the clocking and number of CUDA
cores, the value ranges from 30% to 50% during model train-
ing and testing. Data preparation steps are processed parallel
by several processes whose number depends on the available
cores. Each experiment uses up to 2GB of RAM. On average,
data preparation steps on the flow data streaming server need
about 12.20 seconds (aggregation: 7.65 s, enrichment: 4.50 s,
anonymization: 0.05 s) while using 8 parallel processes and
about 700MB of RAM. Data preparation steps on the flow
data streaming client averagely require 2.13 seconds (labeling:
0.01 s, normalization: 2.12 s) while using 16 parallel processes.

In order to eliminate the computational imbalance of het-
erogeneous hardware, we chose a slow (Quadro P620) and a
fast (RTX 2080) GPU to measure the influence on the training.
Both nodes are connected to the flow data streaming server,
and two DNNs with identical hyper-parameters are trained for
one week. The comparison of performed training iterations or
epochs on each block, respectively, yields a constant factor of
2.75. The number of epochs (Figure 13) depends inversely on
the number of received flows per second in order to ensure
real-time processing. Consequently, training and testing are
performed for fewer epochs during the day than at night.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 8

On average, the different iteration counters result in an
accuracy deviation of about +−1% (Figure 14). To exclude the
influence of varying training iterations, counters are fixed for
all experiments based on the slowest GPU.

12-03
Tue

12-04
Wed

12-05
Thu

12-06
Fri

12-07
Sat

12-08
Sun

12-09
Mon

date

0

100

tr
ai

n
in

g
ep

o
ch

s

min = 3

min = 9 Quadro P620 RTX 2080

Fig. 13: Training epochs comparison of used GPUs.

12-03
Tue

12-04
Wed

12-05
Thu

12-06
Fri

12-07
Sat

12-08
Sun

12-09
Mon

date

0

50

100

a
cc

u
ra

cy
in

%

Quadro P620
mean = 69.1 %

RTX 2080
mean = 69.7 %

Fig. 14: Accuracy comparison of used GPUs.

B. Deep Neural Network Architecture

Fully-connected DNN (FC-DNN) classifiers with fixed
hyper-parameters are used to predict various flow labels. DNN
parameters are selected based on a previously performed
parameter optimization [?] (grid search) using a reference
dataset: 5 layers with 1 000 neurons each and a learning rate
of 0.001. We chose FC-DNNs because they are efficiently (re-
)trainable in a streaming setup (online learning support without
resource-intensive pruning) and can represent more complex
problems than sparser connected models. During DNN training
on a single data block, standard cross-entropy loss is mini-
mized by Stochastic Gradient Descent. Rectified Linear Unit
is applied to each hidden layer as transfer function, and the
output layer utilizes a softmax function. While flow data is
continuously streamed, sequentially prepared and processed
(Section III), each block is fed mini-batch-wise (batch size of
100) to the DNN until a specified number of training iterations
is reached or the next prepared block becomes available.

A flow’s number of packets and bytes as well as its
duration and bit rate are selected as class labels. Because
regression is more challenging for unevenly distributed data,
the prediction is treated as a multi-class classification problem.
Training (90%) and test data (10%) are obtained by splitting
a data block, while respecting chronological order, and are
individually shuffled. This ensures that training and test data
are separated in time preventing overly optimistic test results
due to correlated timestamps, which could be used as features
by DNNs. Standard class weighting methods are applied to
handle an imbalanced number of data samples for each class.
This means that a weight factor based on the proportion of data
samples is determined for each class. Weighting is performed
block-wise for the training and testing phase.

C. Learning on a Streaming Interval

240 streaming experiments for various communication con-
texts are performed, in which DNNs (Section V-B) are trained
and tested on a flow dataset collected for a week (2019-12-
02 15:00 to 2019-12-09 15:00). For each context, individual
sub-datasets and class label boundaries are determined. Only
intermediate values are given, whereby 0 as the lower and ∞
as the upper bound are used for each entry (Table IV). Features
are grouped and their importance is analyzed (Table V).
TABLE IV: Contexts/feature boundaries for the experiments.

Communication
Context

Feature Boundaries
KBytes Packets Duration (s) Bit Rate (Kbit/s)

all contexts

≤

0.11

≤

0.35

≤ ≤

1

≤

3

≤ ≤

0.14

≤

0.53

≤ ≤

4.1

≤

12.2

≤

only WiFi 0.15 0.45 2 3 0.21 1.67 4.2 10.8
exclude WiFi 0.09 0.33 1 2 0.11 0.24 4.1 12.9
exclude DNS 0.51 2.94 5 12 0.18 2.38 3.5 24.1

only TCP 1.50 4.49 9 15 0.25 4.92 6.3 45.8
only UDP 0.09 0.17 1 2 0.12 0.57 4.0 9.7

multi-packet flows 0.28 1.41 2 8 0.21 1.39 5.6 20.8
public/public 0.09 0.28 1 2 0.11 0.23 4.4 12.0
private/private 0.09 0.44 1 4 0.10 0.28 3.9 14.4
private/public 0.01 0.50 1 3 0.17 0.92 4.0 12.8

TABLE V: Feature groups for the prediction experiments.
Feature Group Features in the Data Stream Inputs

all each flow feature from Table II 247
5-tuple IP address �, port �, protocol, timestamp 109
internal network + prefix length �, VLAN � 98

external network + prefix length �, ASN �, 112country code �, geo coordinates �
5-tuple + internal 207
5-tuple + external 221

In summary, each prediction experiment evaluates an indi-
vidual combination of a communication context, feature group
and selected flow label. Table VI summarizes the results,
whereby maximum, mean and median accuracy calculated
based on the maximum value of each block are given. The
forecasting of a flow’s number of packets and bytes is less
challenging compared to the throughput and duration.

Table VI also shows the protocol proportion and median
values of flow volume metrics that are determined based
on the first ≈4 000 blocks. Later blocks are excluded as
flows with a negative duration are contained (exporter issue,
Section III-A). Besides TCP and UDP, DNS is listed because
it is the predominant application protocol in collected data.

Eight experiments are selected and the accuracy trends are
shown in Figure 15. All are related to the same communication
context. The achieved accuracies for using all features or a
flow’s 5-tuple are compared for different labels. The differ-
entiation between day and night has a significant accuracy
influence. This is due to more network dynamics at daytime,
e.g., a varying number of student mobile devices. Generally,
the enrichment improves results by about +2% and stability
of the inference stage especially during the day.

VI. DISCUSSION OF RESULTS

In the following, analysis results for collected flow traffic
and findings from the streaming experiments are discussed.

A. Traffic Analysis and Data Distribution

Although the flow data has no inherent metric, t-SNE is a
suitable tool for the visualization of structural patterns. The

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 9

TABLE VI: Overview of the flow prediction experiment results (left part) and flow volume metrics (right part) for each context.

Communication
Context

Accuracy for Feature Groups and Labels in % Flow Volume
Metrics (Median)all 5-tuple internal external 5-tuple + internal 5-tuple + external

B
yt

es

Pa
ck

et
s

D
ur

at
io

n

B
it

R
at

e

B
yt

es

Pa
ck

et
s

D
ur

at
io

n

B
it

R
at

e

B
yt

e

Pa
ck

et
s

D
ur

at
io

n

B
it

R
at

e

B
yt

es

Pa
ck

et
s

D
ur

at
io

n

B
it

R
at

e

B
yt

es

Pa
ck

et
s

D
ur

at
io

n

B
it

R
at

e

B
yt

es

Pa
ck

et
s

D
ur

at
io

n

B
it

R
at

e

Pr
op

or
tio

n
(%

)

K
B

yt
es

Pa
ck

et
s

D
ur

at
io

n
(s

)

B
it

R
at

e
(K

b
it
/
s

)

all
contexts

max 100 100 90 93 100 100 90 93 98 99 99 98 98 99 95 91 100 100 90 94 100 100 90 92 TCP 21 2.6 12 1.0 14.9
mean 96 98 67 74 95 97 67 73 85 88 61 67 85 88 61 67 95 97 67 73 95 97 67 74 UDP 79 0.1 1 0.2 6.1

median 97 98 68 75 95 98 68 73 85 88 61 67 85 88 61 67 95 98 68 74 95 98 68 74 DNS 71 0.1 1 0.2 6.0

only
WiFi

max 100 100 96 95 100 100 94 95 98 100 93 95 98 100 97 95 100 100 96 95 100 100 94 95 TCP 24 3.3 13 3.3 9.0
mean 96 99 67 69 94 98 64 66 76 81 58 62 76 81 59 62 94 98 65 68 94 98 66 68 UDP 75 0.2 2 0.2 6.2

median 97 99 69 69 95 98 66 66 82 86 60 62 82 86 60 62 95 98 67 68 95 98 68 68 DNS 73 0.2 2 0.2 5.9

exclude
WiFi

max 100 100 94 96 100 100 93 95 98 99 88 90 98 99 88 92 100 100 93 96 100 100 93 96 TCP 19 2.2 11 0.8 17.7
mean 97 98 71 77 96 98 71 76 86 88 65 68 86 88 65 69 96 98 71 76 96 98 71 76 UDP 81 0.1 1 0.1 6.1

median 98 99 72 77 97 99 72 76 86 89 66 69 87 89 66 69 97 99 72 76 97 99 72 76 DNS 70 0.1 1 0.1 6.0

exclude
DNS

max 96 95 91 90 95 95 90 89 93 92 88 88 93 92 88 88 95 95 91 90 95 95 90 90 TCP 70 2.6 12 1.0 14.9
mean 85 84 72 72 84 82 71 71 74 71 64 65 74 71 65 65 84 82 71 71 84 82 71 71 UDP 27 0.1 1 0.1 4.9

median 85 84 73 73 83 81 72 71 74 70 64 65 74 71 65 65 83 81 72 71 83 82 72 72 DNS 0 0.0 0 0.0 0.0

only
TCP

max 95 93 87 89 94 92 87 89 92 89 83 89 93 90 83 90 94 92 87 90 94 92 87 89 TCP 100 2.6 12 1.0 14.9
mean 82 78 76 72 80 76 74 71 70 65 67 65 71 65 68 65 80 76 75 71 80 76 75 71 UDP 0 0.0 0 0.0 0.0

median 80 77 76 72 79 75 74 71 70 64 67 64 70 64 67 65 79 75 75 71 79 75 75 71 DNS 0 0.0 0 0.0 0.0

only
UDP

max 97 100 100 99 97 100 100 99 96 100 100 97 97 100 98 97 97 100 100 99 97 100 100 100 TCP 0 0.0 0 0.0 0.0
mean 75 83 56 54 75 83 56 55 71 80 54 52 71 80 54 53 75 83 56 54 75 83 56 54 UDP 100 0.1 1 0.2 6.1

median 74 82 56 53 74 83 56 53 71 80 54 51 71 80 54 51 74 82 56 53 74 82 56 53 DNS 90 0.1 1 0.2 6.2
multi-
packet-
flows

max 98 97 93 93 97 96 92 94 95 93 90 91 94 94 91 91 97 96 92 94 97 97 93 94 TCP 40 2.6 12 1.1 16.5
mean 90 91 76 76 88 89 75 74 78 78 67 67 78 78 68 68 88 89 75 74 88 89 76 75 UDP 60 0.2 2 0.2 6.7

median 89 91 77 76 88 89 76 74 78 77 68 67 78 78 68 67 88 89 76 75 88 89 76 75 DNS 54 0.2 2 0.3 6.0

public/
public

max 100 100 99 98 100 100 99 98 98 100 96 95 99 100 97 95 100 100 99 98 100 100 99 98 TCP 11 2.2 11 0.9 18.0
mean 97 99 78 74 96 99 78 72 86 94 72 61 87 94 73 62 96 99 78 73 96 99 78 73 UDP 88 0.1 1 0.1 6.2

median 98 100 79 75 97 100 79 73 88 95 72 61 89 95 73 62 97 100 79 73 97 100 79 74 DNS 87 0.1 1 0.1 6.2

private/
private

max 100 100 97 98 100 100 97 97 99 99 97 97 99 99 97 97 100 100 97 98 100 100 97 98 TCP 25 1.2 7 0.2 29.0
mean 93 96 63 76 92 95 62 76 78 80 56 68 78 80 56 68 92 95 63 76 92 95 63 76 UDP 71 0.1 1 0.1 4.9

median 94 97 63 77 93 96 62 76 79 80 55 68 79 80 55 68 93 96 63 76 93 96 63 76 DNS 7 0.7 6 5.7 2.9

private/
public

max 100 100 94 94 100 100 91 93 96 99 90 91 96 99 88 91 100 100 90 97 100 100 98 94 TCP 25 3.1 13 2.5 10.1
mean 95 98 68 71 94 97 67 70 82 86 59 64 82 87 59 65 94 97 68 71 94 97 68 71 UDP 74 0.2 2 0.2 6.1

median 96 99 70 72 95 98 69 70 83 87 60 64 83 87 60 64 95 98 69 71 95 98 69 71 DNS 71 0.2 2 0.2 6.0

12-03
Tue

12-04
Wed

12-05
Thu

12-06
Fri

12-07
Sat

12-08
Sun

12-09
Mon

date

0

50

100

a
cc

u
ra

cy
in

%

all features
mean = 77.6

5-tuple
mean = 76.0

(a) Packets

12-03
Tue

12-04
Wed

12-05
Thu

12-06
Fri

12-07
Sat

12-08
Sun

12-09
Mon

date

0

50

100

a
cc

u
ra

cy
in

%

all features
mean = 81.7

5-tuple
mean = 80.0

(b) Bytes

12-03
Tue

12-04
Wed

12-05
Thu

12-06
Fri

12-07
Sat

12-08
Sun

12-09
Mon

date

0

50

100

ac
cu

ra
cy

in
%

all features
mean = 75.7

5-tuple
mean = 74.4

(c) Duration

12-03
Tue

12-04
Wed

12-05
Thu

12-06
Fri

12-07
Sat

12-08
Sun

12-09
Mon

date

0

50

100

ac
cu

ra
cy

in
%

all features
mean = 72.0

5-tuple
mean = 70.6

(d) Bit rate

Fig. 15: Accuracy trend for only TCP flows and different labels.

t-SNE visualizations clarify data similarities and provide a
better understanding of the flow data in our university network.

Regardless of selected labels, the data is unevenly dis-
tributed w.r.t. classes. Hence, the definition of class boundaries
is challenging. In this article, classes are statically defined so

that an on average approximately equal number of samples for
each class is obtained, which is required for DNN training.
Small differences in class frequencies are compensated by a
class-dependent weighting factor in the loss function. At the
same time, sufficient data samples for each class are required.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 10

We chose a shortcut and analyze the label distribution for all
training data (e.g., not just the current block) in order to define
appropriate class boundaries. In a streaming setting where only
the current block is available, this shortcut will have to be
replaced by a more general solution.

The treatment of classification problems with unbalanced
classes is difficult with DNNs [?] when class imbalances
are too high. Roughly, there are three ways to deal with
imbalances: First of all, there is the method we have adopted
here, which simply increases the DNN learning rate for less
frequent classes (analogous to oversampling). A downside
of this approach is that there is no way of telling if this
modified learning rate is too high, which could break down
the training process completely. Secondly, one might simply
discard samples from more frequent classes in order to ensure
balanced classes. However, this would ignore available data,
which is inacceptable to us. And lastly, one could store or
generate a set of “holdout” samples that is used to bolster
less frequent classes. While this would be a robust solution,
it means that learning is partly performed on data that have
no connection to the current learning task. Thus, performance
could suffer enormously.

Network traffic contains a huge proportion of flows that do
not necessarily require a prediction, e.g., short-term flows, and,
thus, can be excluded or handled in a differentiated manner.

B. Results of the Experiments

Our experiments show that multi-class bit rate prediction for
streamed flow data is feasible with DNNs. Compared to bi-
nary classification, a multi-class problem is more challenging.
Considering only two classes, our experiments also achieve
more than 90% accuracy.

Regarding the investigation of different communication con-
texts, feature groups and flow labels, the prediction results
vary. Whereas the proposed enrichment strategy can improve
and stabilize the accuracy, using a flow’s 5-tuple only provides
slightly worse results (about −2%). Forecasting a flow’s
number of packets and bytes is less challenging than predicting
its throughput and duration. Because the latter and the number
of bytes are used to calculate the bit rate, a fine-grained
duration prediction is of high interest. This calls for a more
precise export of flow timestamps.

Comparing the results of a previously performed feature
importance analysis [?] to the results presented in Section V-C,
learning on a stream rather benefits from the enrichment
but is context-dependent. While the initial feature importance
experiments from [?] only consider a short time interval (10
blocks, 5 - 10 minutes), the streaming experiments are based on
a week’s worth of flow data. Due to more network dynamics
during the day, the accuracies are considerably less favorable
than at night. The results do not seem to be directly related to
the number of training epochs, which strengthens this fact.

We initially employed the Adam optimizer in 240 performed
streaming experiments, in which DNN models were trained for
a continuous week. A significant proportion of the experiments
resulted in accuracy instabilities. All experiments provided
stable results for the first 444 blocks (6 h). The instabilities

we observed started at different times and followed no simple
condition or obvious pattern like having no sufficient number
of flow data samples for one class. Howerver, this may be
due to the varying data distributions (e.g., class imbalances)
in consecutive blocks and the resulting impact on the used
optimizer. As a more comprehensive analysis of the optimizer
issue is required, we used vanilla Stochastic Gradient Descent
for our DNNs. Compared to the previous experiments, no
unstable accuracy results were detected.

A statement on the generalizability of our approach remains
an open issue, because no comparable datasets exist as a
basis for further evaluation. In contrast to using synthetic
data, which depends on the generators quality, a real-world
network scenario is the most credible setup. Although other
environments have different traffic patterns or characteristics,
a campus network with a huge amount of fluctuating and het-
erogeneous systems is challenging. Thus, obtained results may
be transferable to similar networks. Nevertheless, reproducible
simulations for practical transferability are needed to evaluate
the actual benefits in real scenarios.

VII. FLOW ROUTING SCENARIOS

First, the forecasting of flow characteristics can be used
to enhance a flow’s performance (i.e., latency, packet loss,
throughput). A suitable path for a flow communication in the
network topology can be determined based on the predicted
flow characteristics. Second, flow-based prediction offers po-
tential for an optimized or equal utilization of multiple paths
(e.g., multi-pathing or ECMP), whereas a round-robin or hash-
based path selection can result in uneven resource utilization
or congestion. As both scenarios require an advanced traffic
routing, a proactive flow steering based on predicted flow
metadata is suggested. Additionally, an architectural proposal
for a centralized and distributed approach is presented.

A. Use-Cases

In the following, different use-cases for the application of
prediction results to network routing are presented.

1) Throughput Prediction for Path Selection: A proactive
path determination based on the prediction of a flow’s likely
throughput is one approach to address the challenges related
to the examples given in Section I. On the one hand, using a
single optimal path for multiple flows between two routers may
result in a high load or congestion. Meanwhile, alternatives
that have higher costs, but are less loaded, can exist (Figure 1).
On the other hand, multiple paths of equal costs have to be
utilized equally (Figure 2). Knowing a flow’s approximate
throughput ahead of time allows for an advanced distribution
of flows across paths. This minimizes negative impacts on
individual flows and optimizes the MLU/MPU in the topology.

In relation to the first example given in Paragraph I-1a,
Figure 16 shows three simple paths between the routers R1 and
R7 with a uniform capacity of 100%: P1 as the shortest one
(three router hops) as well as P2 and P3 as two alternatives with
higher costs (four hops). Predicting the required throughput
for the three flows f1, f2 and f3 that need to be routed while

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 11

Fig. 16: Preventing path congestion by throughput prediction.

causing varying loads and considering the forecasting for path
selection enables the avoidance of congestion:

1) f1 is forwarded via P1 (L(P1) = B(f1) = 40%).
2) f2 is routed via P1 (L(P1) = B(f1) + B(f2) = 40%+ 30%).
3) As forwarding f3 via P1 would cause congestion, an alter-

native path is selected, e.g., P3 (L(P3) = B(f3) = 40%).

Although the utilization of P2 is low (L(P2) = 0%), instead of
having one overloaded path, both P1 and P3 are utilized to a
medium level (70% / 40%). Because there can be multiple
paths to choose from (i.e., P2 and P3), different selection
strategies are possible: choose the less loaded path or evaluate
path metrics (e.g., latency/load or router resources like queue
utilizations) to calculate and compare their weighted sums.

According to the second example given in Paragraph I-1b,
Figure 17 depicts the simple paths P1 and P2 between the
routers R1 and R4, which are of equal cost and have a ca-
pacity of 100%. Four different flows with varying throughput

Fig. 17: Preventing uneven path load by throughput prediction.

requirements have to be forwarded. The prediction of a flow’s
throughput allows an even utilization of the paths and helps
to avoid congestion:

1) f1 is routed via P1 (randomly chosen, L(P1) = B(f1) = 55%).
2) f2 is routed via P2 (L(P2)<L(P1), L(P2) = B(f2) = 55%).
3) f3 is forwarded via P1 (randomly selected because P1 and

P2 are equally utilized, L(P1) = B(f1) + B(f3) = 60%).
4) f4 is forwarded via P2 because P2 is less loaded than P1

(L(P2) = B(f2) + B(f4) = 60%).

As a result, P1 and P2 are equally utilized to a medium
load level of 60%. Besides a randomized selection of evenly
utilized paths, an advanced mechanism that selects a path
based on the evaluation of prespecified path or router statistics
and their weighted combination is possible. While this analysis
is either based on the current or past state, a prediction of path
attributes, e.g., the observed latency, can serve as a criteria.

At this point, the examples assume that the available capaci-
ties satisfy the required resources. Discussed flows can also be
interpreted as an aggregation of a given set of communications.

2) Duration Forecast for Predictive Traffic Load Matrices:
When a flow routing decision is required, the predicted flow
throughput must be compared to the monitored network state.
Link or path loads can be organized in link-level traffic load
matrices based on past or current load data. The use-cases in
Section VII-A only use the current load levels L(Px). If all
flows are routed based on the forecasting results, the traffic

load matrices correspond to the sum of predicted throughputs.
To evaluate a predictive link/path state, not only the likely
throughput B(fx) but also the probable duration D(fx) of a
flow is required. Predicting both characteristics answers the
question of how long and resource intensive a flow will be.

For example, considering two flows f1 (start t1, B(f1), D(f1))
and f2 (start t2 = t1 + 1

2 D(f1), B(f2), D(f2)=D(f1)) that are
routed over the same path Px results in the following facts
regarding the likely link loads of Px in a predictive load matrix:
• B(f1) for the time interval from t1 to t1 + 1

2 D(f1)
• B(f1)+B(f2) for the time interval from t2 to t2 + 1

2 D(f2)
• B(f2) for the time interval starting from t2 + 1

2 D(f2)
3) Flow and Topology Predictions for Path Selection:

Next to organizing predictive path states based on the likely
throughput and duration of flows, the prediction of topology
characteristics can serve as the basis for evaluating the topol-
ogy’s state. For example, the average load or related latency of
a single link or comprehensive path L(Px) can be predicted for
a given time interval T. Hence, not only the current topology
state or, e.g., an average of a past time interval, but also the
likely future state can be considered. Based on the example
given in Paragraph I-1a, Figure 18 depicts a related scenario.

Fig. 18: Preventing congestion by flow + topology prediction.

In a hybrid scenario, there are flows that get routed using a
classic routing algorithm (FPx) and selected ones fx for which
prediction-based flow routing is applied. The former flows
traverse Px or a part of it. Over time, FPx flows cause different
load on various paths that are monitored in a differentiated
manner (e.g., excluding prediction-based routed flows). They
are used to train a model based on path loads to predict the
load of each link/path for a specified time interval T. Combin-
ing the predicted throughput B(fx) and duration D(fx) with the
forecasted path load L(Px), high load/congestion on the opti-
mal path between R1 and R7 can be proactively avoided. Three
flows f1, f2 and f3 with B(f1)=B(f3)=40% and B(f2)=30%
need to be routed from R1 to R7 with the expected path loads
L(P1)=10%, L(P2)=30% and L(P3)=60% for T. All flows
fx start and end in T (D(fx)≤T).
1) f1 is forwarded via P1 (L(P1)+B(f1)< 100%).
2) f2 is routed via P1 (L(P1)+B(f1)+B(f2)< 100%).
3) Because f3 would cause congestion on P1, an alternative

path (P2 or P3) must be selected.
4) While D(f3)≤T, and the expected path load is

L(P2)<L(P3), P2 is chosen. This is due to a classically
routed flow that starts after f3 and is routed from R5 via
R6 to R7 and likely causes load on the path.

The result is a medium load for all three simple paths
L(P1) = 80%, L(P2) = 70% and L(P3) = 80%.

The same procedure can help to optimize the example given
in Paragraph I-1b. Figure 19 shows an exemplary scenario.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 12

Fig. 19: Preventing unequal util. by flow + topology prediction.

Four flows f1, f2, f3 and f4 with B(f1)=B(f2)=55% as well
as B(f3)=B(f4)=5% need to be forwarded from R1 to R4
with the expected path loads L(P1)=30% and L(P2)=10%
in T. The initial difference results from varying classically
routed flows. All flows fx start and end in T (D(fx)≤T).
1) f1 is routed via P2 (L(P2)<L(P1)) and at the same time,

L(P2)+B(f1)< 100%).
2) f2 is forwarded via P1 (L(P1)<L(P2) and at the same time,

L(P1)+B(f2)< 100%).
3) f3 and f4 are routed via P2 (L(P2)<L(P1) and

L(P2)+B(f3)+B(f4)< 100%).
The result is a medium load for the two paths (85% and 75%).

The prediction of path loads is used for the representation of
the topology state in both examples. Other path information,
e.g., the latency or various router resources like CPU or mem-
ory and their weighted combination can be considered as well.
If D(fx) does not fall completely within T, the programmed
flow steering needs to be reevaluated and reactively adapted.

B. Architectural Overview

1) Centralized Approach: A closed-loop architecture in
which the proposed prediction of flow characteristics can be
utilized for various flow routing scenarios (Section VII-A),
is depicted in Figure 20. The network topology is build of
SDN-enabled devices (e.g., OpenFlow [?] or P4 [?]) that
forward network traffic within the topology. These devices are
able to share their state and configuration with a centralized
control instance, e.g., by SNMP [?], NETCONF [?] or network
telemetry. The controller receives exported flow information
from SDN devices, e.g., via NetFlow [?], IPFIX [?] or
supported by programmable data planes (P4).

The Controller implements a prediction-based flow routing
with three main components. A Flow Processing Engine is
responsible for handling collected network flow data that
will be fed to a continuously (re)trained ML model. All
required operations are executed through a flow data stream
pipeline that performs data collection, preparation and machine
learning (Section III). The Topology Monitor continuously
maintains a state model of the routing topology, e.g., path
capacities and current load. To route individual flows, a
network router sends a routing request to the central Routing
Engine that queries the Flow Processing Engine with the
corresponding 5-tuple describing the flow. It receives a forecast
of one or more relevant flow characteristics. While consid-
ering the predicted flow characteristics, the Routing Engine
evaluates the topology’s state to select an appropriate path
within the topology. Afterwards, the path is programmed on
affected network devices and the Routing Engine maintains
the proactive distribution of flow communications.

Next to a fully SDN-enabled solution where a complete
path is programmed on each relevant network router, a source

Prediction-based Flow Routing

Discovery/
Monitoring

Flow
Export

Controller
Flow Processing Engine

Flow Data Stream Pipeline

Prediction Feedback

Programmable Routing Topology

Topology
Monitor

State

Prediction

5-tupleRouting
Engine

Routing Request

Flow Programming

Fig. 20: Architectural overview of a centralized approach.

or segment routing based approach is also possible. Thereby,
flow-based predictions are requested from a source edge or
border router, and the centralized controller provides a suitable
path for a flow communication which is embedded in the
flow’s packets and evaluated at each intermediate router on
the path to forward the packets to the destination.

While the topology monitoring, discovery mechanism and
the flow export are used to collect information, the Routing
Engine is responsible for proactively controlling the flow
forwarding in the underlying topology (dashed arrow in Fig-
ure 20). It is crucial that individual routing for each flow
results in significant challenges, especially w.r.t. performance
that must be considered separately. For instance, there is a
delay of the first packet of each flow that is defined by the
time required for performing a prediction and determining the
routing decision. While using all supported flow features and
the DNN architecture described in Section V-B, we measured
the elapsed time for a prediction. Measurements without any
optimization for 100 000 single flows and batches (100) on
a node with an RTX 2080 GPU (Section V-A) resulted in a
median delay of ≈0.5ms and ≈0.7ms, respectively.

2) Distributed Approach: A distributed scenario is also
conceivable. Each router serves as a Prediction-Based Flow
Router (PBR) that implements the Topology Monitor, the
Flow Processing and the Routing Engine (Figure 21). Thereby,
only a local topology view is available. Each PBR can either
use local flow-based prediction results to share traffic load
resulting from multiple flows across connected links, e.g., for
improved ECMP. Alternatively, prediction results from other
PBRs are distributed and used for path programming. In both
cases, a Flow Routing Protocol is required that shares the local
state on a global level or the network state plus flow-based
prediction results to combine them at each router. In addition,
there is a delay that affects the first packet of each flow.

Prediction-Based Flow Router
Flow Routing Topology

Flow Programming

Flow
Export

Discovery/Monitoring

Routing
Engine

Topology
Monitor

Flow Processing Engine
Flow Data Stream Pipeline

Prediction Feedback

Prediction5-tuple
Routing Requests

Flow
Routing
Protocol

PBR

...

PBR

PBR

...

State

Fig. 21: Architectural overview of a distributed approach.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 13

A hybrid approach, in which distributed and centralized
entities form a comprehensive solution, e.g., organizing the
topology state in a centralized controller and implementing
the other modules in a distributed manner, is possible as well.

The Flow Processing Engine (highlighted gray in Figures 20
and 21) provides the basis for the conception of the Routing
Engine. The Prediction Feedback mechanism aims at the
improvement of the forecasting. Effectiveness is evaluated by
comparing a prediction with the corresponding flow export
after the transmission of the flow is completed. A further
optimization is possible by applying reinforcement learning
in the context of a routing decision and the topology’s state.

VIII. CONCLUSION AND FUTURE WORK

We propose a flexible flow data stream processing pipeline
to train machine learning models (here DNNs) on real-world
network flow data for the prediction of flow characteristics
that can be used for network traffic optimization.

On the one hand, analyzing the observed flow data stream
from a productive campus network reveals an unequal data dis-
tribution for all considered flow labels, which makes the defi-
nition of application-oriented classes with a balanced number
of flow data samples challenging. On the other hand, feature
similarities between various flow samples are discovered by
applying t-SNE to flow data. Thereby, context-related tagging
provides a better understanding of the network data.

Different communication contexts (e.g., only TCP or ex-
clude WiFi), feature combinations (e.g., 5-tuple or all features)
and flow labels (e.g., throughput or duration) are investigated.
While 240 experiments, each lasting one week, show that the
forecasting is feasible for streamed flow data, the benefit of our
proposed enrichment strategy like an improved or stabilized
accuracy depends on the setup. Our findings show that the
prediction accuracy varies for different flow labels and depends
both on the selected communication context and the available
features. This limits the individual operational capability for
certain application scenarios.
Furthermore, we found that using the Adam optimizer instead
of vanilla Stochastic Gradient Descent is problematic for a
continuous learning on flow data (e.g., accuracy instabilities).
Instead of only differentiating between small (mice) and large
(elephant) flows, we use a multi-class model. This allows for
a more fine-grained classification for an improved traffic engi-
neering, especially in combination with network automation.

The codebase for the streaming setup and a reference dataset
are available to reproduce the experiments.

We see the following points as avenues for further work:
• Class Definition: A process for the definition of classes

(number, boundaries) that is based on application require-
ments rather than pure data statistics needs to be developed.

• Dealing with Class Imbalance: We plan to evaluate data
generation and oversampling methods to compensate the
imbalanced number of examples for each class, and to
ensure that suddenly occurring class imbalances do not
disrupt the training of DNN classifiers.

• Robust Continuous Adaptation: A continuous adaptation of
the prediction model based on network changes or seasonal

effects is essential to ensure a sustained prediction accuracy.
Training several classifiers at different time scales might be
beneficial, since this provides fallbacks if a classifier trained
on short-term information only is degraded by a short-term
change in data statistics. This was observed for several of
the long-term experiments we conducted for this article.
Lastly, it is planned to investigate other online machine
learning models that do not share the limitations of DNNs
w.r.t. incremental learning capacity and class imbalance or
that can handle imbalanced regression problems. For these
investigations, it is imperative to systematically consider
datasets that are even larger and more extended in time.

• Stochastic Gradient Descent Optimizer Investigation: A de-
tailed analysis of the accuracy instabilibities observed when
utilizing the Adam optimizer for the DNN models remains
an open issue. In order to investigate the effect and impact
of different strategies for a continuous learning on flow
data, a more comprehensive study of optimizers proposing
enhancements for Stochastic Gradient Descent is necessary.

• Generalizability Evaluation: To study the generalizability
of our proposed approach, we aim at getting access to flow
data from other network setups, e.g., data centers, or the
evaluation of other data sources like Internet traces.

• Integrating Forecasting Results in Flow-based Routing:
Forecasting results can serve as basis for a prediction-
based flow routing. To evaluate this approach, a network
emulation environment that contains the architecture given
in Section VII-B is under development. Besides an adaptive
routing, this includes network monitoring mechanisms like
(in-band) telemetry or data plane supported probing for
maintaining the state of the network topology.

• Programmable Data Planes for Flow Export: Switches with
a programmable data plane (e.g., P4) are planned to be eval-
uated as flow exporters. This allows for a flexible export of
features and can provide more fine-grained flow information
like timestamps. Additionally, the switches might implement
a data enrichment strategy at the network level.

ACKNOWLEDGEMENTS

We thank Sven Reißmann from the university data center
for assistance with data collection and data preparation.

Christoph Hardegen received his B. Sc. and M. Sc.
degrees in applied computer science from Fulda
University of Applied Sciences in 2015 and 2018.
He is currently pursuing his Ph. D. degree at Fulda
University of Applied Sciences. His research in-
terests include traffic engineering, especially the
application of machine learning results to routing in
programmable networks.

Benedikt Pfülb received his B. Sc. and M. Sc. de-
grees in applied computer science from Fulda Uni-
versity of Applied Sciences in 2015 and 2018. He
is currently pursuing his Ph. D. degree at Fulda Uni-
versity of Applied Sciences. His research interests
include neural networks and artificial intelligence,
especially incremental and life-long learning.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, Z 2020 14

Sebastian Rieger received his Diploma degree in
computer science from Fulda University of Applied
Sciences in 2003. In 2007 he received his Ph. D. de-
gree from the University of Göttingen. He was a re-
search assistant at Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen and Steinbuch
Centre for Computing. Since 2012 he holds a full
professorship for Multimedia Communication Net-
works at Fulda University of Applied Sciences.
His research interests include network management
and virtualization, automation and cognitive man-

agement and data center networks.

Alexander Gepperth received his Diploma in
physics from LMU Munich in 2002. In 2005, he
received his Ph .D. from Ruhr-Universität Bochum.
He worked at Honda Research Institute (Offenbach,
Germany) as a Senior Scientist from 2005 to 2010,
and as an assistant professor at ENSTA ParisTech
until 2016. Since 2016, he holds a full professorship
for Machine Learning at Fulda University of Applied
Sciences. His research interests include continual
machine learning as well as cognitive architectures.

