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Christoph Hardegen∗, Benedikt Pfülb∗, Sebastian Rieger∗, Alexander Gepperth∗ and Sven Reißmann§
Department of Applied Computer Science∗/Data Center§, Fulda University of Applied Sciences, Germany

Email: {christoph.hardegen, benedikt.pfuelb, sebastian.rieger, alexander.gepperth}@cs.hs-fulda.de
and sven.reissmann@rz.hs-fulda.de

Abstract—We present a processing pipeline for flow-based
throughput classification based on a machine learning component
using deep neural networks (DNNs) that is trained to predict the
likely bit rate of a real-world network traffic flow ahead of time.
The DNN is trained and evaluated on a flow data stream as
well as on a reference dataset collected from a university data
center. Predicted bit rates are quantized into three classes instead
of the common binary classification into “mice” and “elephant”
flows. An in-depth description of the data acquisition process,
including preprocessing steps and anonymization used to protect
sensitive information, is given. We employ t-SNE (a state-of-the-
art data visualization algorithm) to visualize network traffic data,
thus enabling us to analyze and understand the characteristics of
network traffic data and relations between communication flows
at a glance. Additionally, an architecture for flow-based routing
utilizing the developed pipeline is proposed as a possible use-case.

Index Terms—Traffic Engineering, Network Management,
Flow Prediction, Machine Learning, Deep Learning, NetFlow

I. INTRODUCTION

Traffic Engineering has been an ongoing field of research
since the early days of computer networks [?], [?]. Recent
advancements in machine learning have led to new approaches
that improve network and service management in this area,
e.g., using traffic forecasting [?], [?]. These include the predic-
tion of traffic characteristics for efficient routing as well as load
balancing, e.g., based on Equal Cost Multiple Paths (ECMP)
[?]. A significant effort has been put in the classification of
“elephant” and “mice” network flows to allow for an even
utilization of individual links, as, e.g., described in [?].

When a link or path is selected for a flow, the traffic amount
it will produce is not known a priori. As flows cause different
traffic volumes, two key problems arise: First, using only a
single optimal path (e.g., the shortest) while alternative paths
exist can result in high load or congestion on this route leading
to unequal utilization. Second, multiple paths with equal cost
have to be shared equally to balance the load properly. Because
individual flows typically have to be forwarded over the same
path during their lifetime, reactive load distribution of network
flows across multiple links or paths is not always possible.
For example, this is caused by stateful network components
like firewalls and middleboxes in current networks [?], [?].
Hence, a proactive and forecasting-based solution that en-
hances traffic engineering, which is not limited to destination-
based forwarding, is required. This could, for example, include
Software-Defined Networking (SDN) [?] techniques that can

be deployed to enable a fine-grained traffic steering of network
flows based on the prediction of flow metadata.

In this paper, we focus on a flow data stream pipeline to
train and deploy a deep learning based prediction model for the
forecasting of network flow features. Additionally, a high-level
architecture that uses the pipeline for flow routing is proposed.
Compared to existing traffic classification mechanisms (e.g.,
distinguishing elephant from mice flows [?]), we introduce
a bit rate estimation categorized into multiple traffic classes.
This allows for a more fine-grained load balancing and traffic
engineering of flows within a network. Traffic characteristics
are highly variable, e.g., with respect to the environment and
size of the network [?]. For instance, the amount of traffic
fluctuates over time and spikes usually occur. Therefore, a
key challenge in our work is to obtain realistic network traffic
characteristics to be used as input data for machine learn-
ing. To this effect, a systematic collection of network traffic
metadata was conducted in our university campus network. To
address the constant change of collected traffic characteristics
(i.e., concept drift), we use a stream processing approach
over consecutive intervals to achieve continuous learning and
adaptation of the prediction model. In this setting, an efficient
implementation of the processing pipeline is required to keep
up with the incoming stream of collected network flow data.
Besides these challenges, an obstacle to process flow data
and to obtain a realistic dataset is privacy. The collected
flows contain IP addresses, which can be viewed as sensitive
information. Accordingly, anonymized data is used at all
stages of data processing to ensure privacy protection.

II. RELATED WORK AND CONTRIBUTIONS

A survey of techniques for traffic classification using ma-
chine learning is given in [?], [?] and [?]. A recent example
for the use of machine learning to classify flows and their
bandwidth in data center networks is presented in [?]. This
study is based on a simulation of data center networks.
In contrast, network traffic flow characteristics in real-world
networks and data centers are often fluctuating and complex,
as, e.g., observed in [?]. Other related work in the area of using
machine learning techniques for routing can be found in [?].
[?] presents an SDN-based adaptive flow traffic engineering
framework. Like multiple other publications, these papers
focus on two traffic classes of large (elephant) and small (mice)
flows. A generalized approach to use machine learning for
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routing can be found in [?]. This publication proposes the
use of deep reinforcement learning, but it is again not using
real-world network traffic data. [?] introduces the combination
of learning from existing Dijkstra-based routing algorithms
and imitating it with higher performance using a dynamic
routing framework for SDN. This framework focuses on the
optimization of network throughput. It also uses traffic data
from a simulated instead of a real-world network topology.

Our developed flow data stream pipeline can be combined
with network management and monitoring, e.g., as proposed
for knowledge-defined networking [?] or cognitive network
management [?], e.g., joined with existing SDN [?] and
Network Functions Virtualization [?] solutions.

The main contributions of this article are as follows:
• We perform multi-class training and prediction of a flow’s

bit rate using DNNs working in a streaming fashion.
• We give insights into the process of collecting real-world

flow data and apply t-SNE as visualization technique.
• We provide a dataset (525 million flows) collected during

one week and the code for our flow data stream pipeline.

III. ARCHITECTURAL OVERVIEW

A closed-loop architecture in which the proposed prediction
of flow characteristics can be utilized is depicted in ??. The
network topology is required to be built of (hybrid) SDN-
enabled devices (e.g., P4 [?], OpenFlow [?]) that forward
network traffic within the topology. These devices are able
to share their state and configuration with a centralized con-
trol instance (e.g., via SNMP [?], NETCONF [?]) that also
receives exported flow information from these devices (e.g.,
via NetFlow [?], IPFIX [?]). The Controller implements a
prediction-based flow routing with three main components. A
Flow Processing Engine is responsible for handling collected
network flow data that will be fed to a continuously trained
Deep Neural Network (DNN). All required operations are
realized through a flow data stream pipeline that performs
data collection, preparation and machine learning (see ??).
The Topology Monitor continuously maintains a state model
of the routing topology, e.g., path capacities and load. To route
individual flows, a network device sends a routing request to
the central Routing Engine that queries the Flow Processing
Engine with the corresponding 5-tuple (source/destination IP
address, source/destination port and transport protocol) de-
scribing the flow. It receives a forecasting of one or more
relevant flow characteristics, i.e., the amount of transferred
bytes and/or packets, the duration as well as the bit rate.
Knowing a flow’s bit rate and/or duration at the beginning of a
communication can be used for resource-efficient routing, e.g.,
to equally spread the traffic load across multiple links/paths.
The Routing Engine evaluates the topology’s state and, consid-
ering the predicted flow characteristics, selects an appropriate
path within the topology. Afterwards, the path is programmed
on affected network devices.

While the topology monitoring and the discovery mecha-
nism as well as the flow export are used to gather relevant
information, the Routing Engine is responsible for proactively

controlling the flow forwarding in the underlying topology
(dashed arrows in ??). It is crucial that individual routing
for each flow results in significant challenges, especially w.r.t.
performance, which can (partly) be addressed by some form
of aggregation, e.g., considering IP flows or entire IP subnets.
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Fig. 1: Architectural overview.

Besides a centralized approach that leverages a global topol-
ogy view, a distributed or hybrid solution is also conceivable.
In a distributed scenario, each router has to implement the
monitoring as well as the Flow Processing and Routing Engine
individually, with only a local topology view being available to
it. Local results can be used to share traffic load across directly
connected links (e.g., improved ECMP). Another distributed
alternative would require a network protocol that distributes
prediction results of edge devices for path programming.

The focus of this paper is placed on the centralized Flow
Processing Engine (highlighted gray in ??), which provides
the essential basis for the conception of the Routing Engine
that will be implemented as a next step. The same applies
to the Topology Monitor as well as the Prediction Feedback
mechanism improving the forecasting. Effectiveness is evalu-
ated by comparing a prediction with the corresponding flow
export after the transmission of the flow is completed. Next to
flow characteristics, the prediction of topology features (e.g.,
link or path latency) is considered as a further extension. A
(weighted) combination of both result types can be leveraged
for selecting adequate routing paths.

IV. FLOW DATA STREAM PIPELINE

The Flow Processing Engine (see ??) includes a flow data
stream pipeline (see ??) that is responsible for data collection
and preparation as well as learning from flow data. The
codebase is publicly available in a Git repository1.

Enrichment AnonymizationAggregation Normalization

Flow Data Stream Server Flow Data Stream Client(s)

Fig. 2: Flow data stream pipeline.

A. Data Collection

Network Architecture Data collection takes place in a real
production network at Fulda University of Applied Sciences.
The university has 26 individual local buildings and one off-
campus location. The network is designed according to the
classic core-distribution-access model, in which each building
represents an element in the distribution layer, being connected
to two core routers as shown in ??. Two data centers are also

1https://gitlab.cs.hs-fulda.de/flow-data-ml



connected to the core layer, providing all central IT services
(e.g., directory, file, email, DNS servers). Through the use of
CAPWAP [?] for the provision of the wireless infrastructure,
any WiFi traffic is passing the routers as well.

NetFlow 
CollectorInternet

Core Distribution

Building 

Data Center

Access

CatM

CatE

...

...

Fig. 3: Network and NetFlow collection infrastructure.

This architecture allows us to export traffic characteristics
and metadata from both central core routers using the NetFlow
protocol, catching any WiFi, data center, internal and external
traffic, except for packets that get routed within a single
building at the distribution layer.

The Cisco Catalyst platform is used for the entire network.
At the core layer, two Cisco Catalyst 6509-E switches in
Virtual Switching System mode build the primary router in
building E (CatE), while a Cisco Catalyst 4500 switch is
available for redundancy in building M (CatM). All devices are
capable of exporting Cisco Flexible NetFlow [?], an extension
to the NetFlow protocol [?].
Flow Export Flow information is continuously exported by
the core routers in the data center. These central devices
connect most of the campus infrastructure. Hence, the network
traffic includes a variety of realistic traffic patterns. Collected
flow information describes internal and external as well as
client-to-server and server-to-server communications.

A configured flow record selects flows to export based
on a set of matching criteria (i.e., the 5-tuple). Additional
information is added to the flows before they get exported
to the collector (collect criteria). This metadata consists of
timestamps for the flow’s start and end time, the number of
packets and bytes transmitted, as well as a union of all TCP
flags found in any packet belonging to the flow. A flow monitor
is defined, which references the flow record as well as the
configured flow collector. Specified timeouts ensure that flow
information is exported at regular intervals, even if individual
flows last for a long time. An active timeout of 300 s and an
inactive timeout of 30 s are used.

To avoid duplicated exports from one router, flow records
are exported only for ingress traffic. The collector handles
exported flows (∅ ≈2 000 records per second). Because only
unicast flows are considered, multicasts and broadcasts are
filtered out. After receiving a collection of about 100 000
consecutive flow records (block), data preparation is initiated.

Furthermore, depending on the routing, a flow can pass
through both routers. As both devices export data, the same
information is potentially collected multiple times. These
duplicate flow records are filtered as part of the aggregation
stage in the flow data stream pipeline (see ??). Thus, only
unique records are further processed.

B. Data Preparation

To prepare flow information for the training performed in
the machine learning module, the following operations are
applied to each block of flow records. Most steps of the
data preparation are executed by a central flow data streaming
server that multiple flow data streaming clients can connect to.
Several clients can realize various experiments, e.g., different
learning techniques. The streaming server is responsible for
data aggregation, enrichment and anonymization. Additionally,
the collected and preprocessed data is stored as a dataset. The
streaming clients normalize the received flow data and assign
class labels for classifier training (see ??). All data preparation
operations are parallelized on both the server and client side.
Therefore, each block is temporarily divided into data chunks
that are processed independently of each other.

1) Data Aggregation: One flow record might not describe
a complete communication because of exporter configurations
or hardware limitations (i.e., timeouts or cache sizes). To
maintain flow entries that represent an entire communication,
flow records are aggregated block-wise. The applied method
is based on the 5-tuple, timestamps and flags. Flow properties
like timestamps, the duration, the number of packets and bytes
as well as the bit rate are updated. Because of the timestamp
resolution (ms), the bit rate for short-term flows (duration
<1ms) cannot be calculated and is set to 0 (∅ ≈17 000
records per block). On average ≈20 000 records per block de-
scribe communications with only 1 packet (duration=0ms).
Records that cannot be aggregated are dropped (∅ ≈2 500
records per block). Duplicate flow records from exporters
in both switches are filtered based on their first occurrence
(∅ ≈4 200 records per block). Aggregation and filtering of a
block reduces ≈100 000 records to ∅ ≈75 000 entries.

2) Data Enrichment: Each flow entry is enriched with
additional metadata that is extracted from the internal and
global topology (e.g., private prefixes, VLANs and public
prefixes, ASNs), based on a flow’s source and destination IP
address. IPAM exports as well as a lookup service are used
as data sources. Data enrichment enables the consideration of
different communication contexts and levels.
Moreover, dynamically chosen ports≥ 215 are replaced by 0.

3) Data Anonymization: To guarantee privacy protection,
an anonymization of IP and network addresses is performed.
Address octets are substituted using individual substitution ta-
bles, which are permuted based on a cryptographically hashed
password (seed) defined by the data center. This ensures that
the semantics of addresses are kept apart from their adjacency.

4) Data Normalization: To feed the model (e.g., the DNN)
with suitable inputs, a normalization and/or data format trans-
formations are performed. Three formats are supported: float,
bit pattern, one-hot (e.g., see ??). The float normalization
(min-max normalization) maps a single value to a predefined
interval, e.g., [0.0, 1.0]. Methods like bit pattern and one-
hot avoid the representation of numerical proximity, which is
important for, e.g., IP addresses. The latter method transforms
each categorical value to a bit pattern with a single 1.0.



TABLE I: Normalization and transformation examples.
Feature Raw Data Data Type Output Data
IP address 81.169.238.182 Float 0.317, 0.662, 0.933, 0.713
Protocol 6 Bit pattern 0, 0, 0, 0, 0, 1, 1, 0
Locality Private | Public One-hot 0, 1 | 1, 0

An overview of the features in the data stream that results
from the data preparation stage is given in ??. For each
available feature, the supported formats with the size of the
resulting output vector are stated. Data transformation types
marked in gray are used for the experiments. The origin of
each feature can be identified and features for which there is
both a source and a destination are marked with �.

TABLE II: Features in the data stream.
Feature Data Format OriginFloat Bit One-hot
month 1 4 12

DC

day 1 5 31
hour 1 5 24
minute 1 6 60
second 1 6 60
protocol 1 8 7
address � 4 32 7
port � 1 16 7
network � 4 32 7

DE

prefix len � 1 5 7
asn � 1 16 7
longitude � 1 7 7
latitude � 1 7 7
country code � 1 8 240
vlan � 1 12 7
locality � 1 1 2

DC = Data Collection; DE = Data Enrichment

C. Machine Learning

This module implements the training and inference stages
of a Deep Neural Network (DNN). Various online and offline
(i.e., not operating on live data streams) experiments can
be performed to evaluate the validity of different machine
learning models (e.g., DNNs or Support Vector Machines),
their hyper-parameters (e.g., number and size of layers for
DNNs) and/or data normalization and enrichment strategies.
When doing so, either for model training or inference, the
prepared flow data is always processed in a block-wise fashion.

Since data normalization and machine learning are per-
formed on the client side, sub-datasets can be extracted from
a block of data and used as training and test set (splitting and
shuffeling). The slicing of flow information (feature selection)
as well as the filtering of flow feature values (feature filtering)
are supported, e.g., excluding WiFi traffic or considering
specific transport protocols. Each flow entry is assigned a
class using predefined class boundaries for the selected flow
property, e.g., the bit rate. Flow properties that merit being
predicted by the model are termed labels in the subsequent
text. The number of bytes, the number of packets
as well as a flow’s duration and bit rate are supported
as class labels. All labels are determined during the data col-
lection respectively updated in the data aggregation stage and
afterwards transformed into the one-hot format. The machine
learning stage outputs the predictions of the trained machine
learning model for individual network communications.

V. NETWORK FLOW ANALYSIS

By monitoring the number of current cache entries, as well
as the high watermark values, we can ensure that the devices
are capable of exporting all flow information without hardware
restrictions like cache sizes being the limiting factor. The CPU
and memory utilization do not increase significantly while
exporting flow information. ?? shows the trend of the NetFlow
cache sizes on both switches for a selected week (2019-06-
03 16:50 to 2019-06-10 16:50), with no significant rise on
2019-06-10, which was a national holiday.
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Fig. 4: Flow cache entries for both central network switches
(CatE, CatM) for one week (5min resolution).

The incoming traffic volume for both switches is depicted
in ??, and one can observe that the trend of the amount of
summed-up traffic correlates with the trend of the number of
cache entries. Outgoing traffic shows the same pattern, but the
rates are much less and roughly equal for both routers. For
simplicity’s sake, their depiction has been omitted.
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Fig. 5: Monitored network traffic (downstream) for both net-
work switches (CatE, CatM) for one week (5min resolution).

?? outlines the average number of flow records received by
the collector for each block during a continuous interval of one
week. As the collection time for a block is directly related to
the number of received flow records, the corresponding trend
can also be derived from the same figure.
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Fig. 6: Average number of flow records per second for each
data block during a continuous week.

As expected, the trends in ?????? show that there is
significantly less traffic at night and on the weekend.



VI. TRAFFIC ANALYSIS EXPERIMENTS

The data distribution was investigated based on the chosen
flow labels. For the traffic analysis, unless otherwise stated,
we selected the training proportion from a block (5413) of
aggregated flow entries (2019-06-07 at about 14:00) out of
our stored reference dataset2. The dataset contains about 7 000
blocks with overall approximately 525 million flow entries
collected for a continuous week (2019-06-03 16:50 to 2019-
06-10 16:50). Existing structural patterns within the flow data
are visualized, while, for the sake of clarity, only the first
1 000 flow entries of the selected block are used. Both steps
help to provide a better understanding of the data. Regarding
the analysis’ results, variations were recognized for previous
or following blocks, but the trend remained the same when
considering day and night time separately. Self-generated
traffic patterns were used to verify the pipeline operations and
supported the validity of the analysis’ results.

A. Label-based Data Distribution

?? outlines the data distribution within the complete selected
block for each flow feature suitable for class labeling. Con-
sidering both the bit rate and duration of a flow (see ????),
most flow communications are active for a relatively short time
and/or transmit very few data while being active. The same
findings apply to the observed number of transferred bytes
and/or packets (see ????), which are both relatively small.
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Fig. 7: Histograms of the selected block for all considered
flow labels (logarithmic scale).

With regard to ??, flow data is unevenly distributed (clarified
by median values). As the definition of class boundaries that
are used for labeling each flow entry depends on the observed
flow data, an appropriate determination is challenging. Hence,
ad-hoc boundaries for three classes matching the current data
distribution are used for our experiments, even though they
have to be adapted for a practical application.

?? illustrates the trend of the class distribution across all
blocks of the reference dataset. Here, a flow’s bit rate is
considered as label and predefined exemplary class boundaries
in bit/sec are used: class 0 = [0, 50[ (red), class 1 = [50, 8 000[
(green), class 2 =[8 000, ∞] (blue). While the flow data pro-
portion for each class remains approximately the same, there

2The dataset is available upon request.

are minor deviations for individual classes. Therefore, class
weighting methods are also applied to address an imbalanced
number of elements per class within a block.
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Fig. 8: Class distribution for all blocks of the reference dataset.

B. Structural Data Patterns

t-distributed Stochastic Neighbor Embedding (t-SNE) [?] is
used to discover and visualize structural data patterns based
on an Euclidean distance metric. t-SNE performs dimension-
ality reduction by mapping high-dimensional data to a space
with lower dimension (2D or 3D space) while preserving
neighborhood relations as much as possible. ?????? share the
same t-SNE output. The tagging is context-related. Similarities
between flows (multi-dimensional feature vectors) are indi-
cated by the relative position of each data sample, though the
absolute positions can be neglected.

The differentiation of analyzed flow entries based on the
used transport protocol is shown in ??. 82.6% of the flow
data samples belong to UDP ( ) and 17.2% to TCP ( )
traffic. The remaining proportion of 0.2% ( ) describes com-
munications for other protocols like ICMP. For each transport
protocol, there are multiple accumulations of data samples,
which indicate feature similarities. Symmetric spots for each
accumulation can be identified.

TCP UDP other

Fig. 9: Transport protocol-based tagging of the t-SNE results.

?? depicts the tagging of each data sample according to
the communications’ locality. Based on the locality of the
source and destination, four different communication types
are distinguished. 6.4% of the 1 000 flow entries are related
to communications between private systems ( ), the other
93.6% involve at least one public system (i.e., communica-
tion to or from the public Internet). While 39.4% ( ) of
the flows are describing communications between publicly
addressed systems, 27.0% ( ) respectively 27.2% ( ) belong
to a communication between an internal and external system,
i.e., inverse directions. Again, symmetric accumulations for
each communication type can be determined. Considering
the context of localities, symmetric spots within the t-SNE
visualizations are related to different communication direc-
tions, i.e., belonging to the same session or conversation. WiFi



traffic (33.1%) is separately marked and strengthens this fact.

Fig. 10: Locality-based tagging of the t-SNE results.

The tagging of the t-SNE output with symmetric accumu-
lations based on the application protocol for each flow entry
is delineated in ??. With 77.0%, most of the flow entries are
classified as DNS traffic ( ), which is interrelated with the
huge proportion of UDP flows (see ??). 13.8% of the flow
entries belong to HTTP(S) traffic ( ) and another 9.2% to
other application protocols, e.g., SNMP, LDAP, SMTP ( ).

HTTP(S) DNS other

Fig. 11: Application-based tagging of the t-SNE results.

According to the accumulations of individual flow data
samples and their symmetric pair spots, the t-SNE result
shows feature similarities for several flow entries. The context-
based tagging illustrated in ?????? helps to further specify
respectively clarify the existing structural patterns in the data.

Besides the fact that many communications require a do-
main name lookup, the reason for the huge proportion of
flow communications that are related to DNS lies in the
network architecture and the protocol operation of DNS itself.
Requests sent to the internal DNS resolver and those addressed
to external DNS servers pass through the central network
devices that export flow data. External requests also include
queries that cannot be handled by the local DNS resolver
and hence are externally forwarded. Flows that describe DNS
communications normally have either only one exchanged
packet or both a small number of transferred bytes and a short
duration (short-term). Thus, those flows and similar ones can
be excluded because the prediction is practically not relevant.

?? gives an overview of flow-based volume characteristics
for all data blocks. While approximately 69% of all flows
belong to DNS, their volumetric proportion is small.

TABLE III: Volume metrics for all blocks (mean/median).
Protocol KBytes Packets Duration Bit rate

(flow proportion) (seconds) (Kbit/s)
TCP (19.4%) 155.4 / 84.7 172.8 / 93.6 23.7 / 2.0 192.9 / 5.1
UDP (79.9%) 6.4 / 3.8 16.0 / 12.8 22.5 / 0.1 14.3 / 2.3
DNS (69.4%) 0.2 / 0.2 1.4 / 1.5 17.7 / 0.1 5.6 / 2.2

C. Verification of the Flow Data Stream Pipeline Stages

To verify the operation of the data collection and each
stage in the preparation phase (see ??), self-generated flow

communications were injected into the network, e.g., using
iperf, and retraced. Our strategy considered various application
and transport protocols, varying bit rates and durations (either
including interruptions for predefined time intervals or not) for
both internal and external communications.

The completeness of collected flow data was also exemplar-
ily checked. Therefore, the amount of incoming public traffic
was compared to the summed up traffic data of related flow
entries for a specific time interval (about 5 minutes, 2019-
06-06 at 13:00). The overall average bit rate for flow entries
(starting between 12:55 and 13:00), calculated based on the
accumulated number of bytes for each entry and the given time
interval in seconds, is approximately 450Mbit/s. The added
up bit rate for both central routers (see additional markers
in ??) is 564Mbit/s, which roughly matches the determined
value for the blocks. As expected, the observed traffic volume
differs from our accumulated flow entries, because of the time
offset for the flow export. Sensitive networks were filtered out
beforehand and protocol overheads were not considered which
also explains the lower value.

VII. FLOW PREDICTION EXPERIMENTS

In our experiments, fully-connected DNN classifiers with
varied hyper-parameters (e.g., the number and size of layers)
are used to forecast a selected flow label. We choose DNNs
because they are efficiently (re-)trainable in a streaming setup
(support for online learning). During DNN training on a single
data block, standard cross-entropy loss is minimized based
on stochastic gradient descent using the “Adam” optimizer.
Whereas a ReLU transfer function is applied to each hidden
layer, the output layer utilizes a softmax function.

We select a flow’s bit rate as class label. While only a
single flow label is used here, other flow features or feature
combinations are conceivable as well. Because regression is
more challenging for unevenly distributed data, the prediction
is treated as a multi-class classification problem. Training
(90%) and test data (10%) are obtained by splitting a data
block, while respecting chronological order, and are individ-
ually shuffled. This ensures that training and test data are
separated in time, which prevents overly optimistic test results
due to correlated timestamps, which could be used as features
by the DNN. Class weighting methods are applied to handle an
imbalanced number of data samples for each class. To achieve
this, either standard class weighting or under-sampling is used.
The latter reduces the number of data elements in each class to
the minimum for all classes. With standard class weighting,
a weight factor based on the proportion of data samples is
determined for each class. Weighting is considered for the
training as well as for the testing phase block-wise.

A. Feature Importance

A parameter optimization of roughly 6 000 experiments
using another reference dataset [?] is performed to evaluate
different DNN configurations. The dataset contains 8 h of flow
data with about 53 million flow entries that were collected
during a normal weekday (2019-02-15 09:00 to 17:00). Tested



DNN parameters include the number of layers {3, 4, 5} with
different sizes {200, 400, 600, 800, 1000, 1500}. The learning
rate {0.001, 0.0001, 0.00001} is varied and the optional ap-
plication of dropout (probabilities: 0.9 / 0.8 for hidden and
0.6 / 0.5 for the input layer) is considered. Each DNN is
trained sequentially for 10 epochs on the first 10 blocks of the
mentioned reference dataset using the training proportion of a
data block. Blocks are fed mini-batch-wise to the DNN (100
samples per batch). The prediction accuracy is evaluated based
on test data for each block. Also, to investigate the relevance
of supported features, feature combinations as well as their
pairing with the 5-tuple are extracted from a data block as sub-
datasets and fed to the DNN. Considered features respectively
pairs are shown in ??. Features with a source and a destination
information are marked with �. The size for the input vector
for the DNN is also outlined.

TABLE IV: Importance of feature pairs and combinations.
Feature(s) Mean Accuracy in % (chance improved)

Single Feature Inputs 5-tuple plus Feature Inputs
all features 79.3 (+46.0) 247 - -
5-tuple features 77.4 (+44.1) 104 - -
ip address � 75.1 (+41.8) 64 - -
network prefix � 73.8 (+40.5) 74 77.6 (+44.3) 178
VLAN � 71.7 (+38.4) 24 77.7 (+44.4) 128
locality � 63.6 (+30.3) 2 77.3 (+44.0) 106
protocol 62.7 (+29.4) 16 - -
ASN � 62.3 (+29.0) 32 77.5 (+44.2) 136
geo coordinates � 60.9 (+27.6) 4 77.7 (+44.4) 108
start timestamp 56.3 (+23.0) 5 78.8 (+45.5) 109
transport port � 43.1 (+ 9.8) 8 - -
country code � 33.3 (+ 0.0) 2 77.6 (+44.3) 106

For a classification task with an evenly distributed number
of elements using three classes, chance is about 33.3%.
Choosing an individual feature pair that is not part of the
5-tuple, e.g., the VLAN tag or prefix information, an im-
provement of up to ≈ +40% can be achieved. Using only the
5-tuple, the prediction achieves an average of about 77%. The
combination of all features from the data enrichment with the
5-tuple information leads to a further enhancement of ≈ +2%.

Due to accuracy irregularities for some individual features
in different blocks, the average and not the maximum value
is used to compare feature importance. The combinations of
the 5-tuple with each individual feature only exhibit minor
accuracy deviations for the investigated blocks.

B. Learning on a Streaming Interval

Four DNNs are trained and tested simultaneously for one
week (2019-06-03 16:50 to 2019-06-10 16:50). Flow data
is continuously collected as well as sequentially prepared
and processed (see ??). DNN parameters are selected based
on a previously performed parameter optimization (see ??,
[?]) using the reference dataset mentioned in ??. As under-
sampling performs worse on average than class weighting,
we exclude it from further considerations. Each block is fed
mini-batch-wise (batch size of 100) to the DNN until the next
prepared block is available.

?? shows the maximum accuracy per data block using class
weighting as balancing method. As network traffic is more
dynamic during daytime, the accuracy drops accordingly. The

TABLE V: Hyper-parameters for the streaming experiments.
Features Layers Sizes Learning Rate Dropout Probability

all 3 1 000 0.0001 (1.0, 1.0)
5-tuple 5 1 000 0.001 (0.9, 0.6)

achieved maximum/average accuracies for the experiment with
all flow features are 94.1% / 82.1%. In comparison, the ones
for the 5-tuple experiment are 91.9% / 61.2%. Regarding the
means, a significant improvement, which results from the data
enrichment, is recognizable (≈ +20%).
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Fig. 12: Maximum test accuracies for each block and overall
mean for a continuous streaming interval of one week.

The number of training epochs for each block (see ??) de-
pends inversely on the number of received flows per second in
order to ensure real-time processing capability. Consequently,
training and testing are performed for considerably less epochs
during the day than at night.
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Fig. 13: Number of training epochs for each block for a
continuous streaming interval of one week.

VIII. DISCUSSION OF RESULTS AND USE-CASES

Flow Data Acquisition An issue is the collection and prepara-
tion of real-world flow data, which requires an understanding
of the network topology (e.g., the behavior of flow exporters).
While anonymization ensures privacy protection for processing
sensitive information in our experiments and for publishing
a dataset, it is not a mandatory functional operation for
the proposed solution. Nonetheless, our strategy allows a
consistent transformation for consecutive data acquisitions.

Aggregation and filtering methods ensure that flow charac-
teristics are not collected multiple times and only complete
flow communications are considered. Due to the block-wise
processing of data, the aggregation in turn causes a loss of flow
information because flow records not belonging to complete
conversations are dropped. Long-term flows (> 5min) can
suffer from this problem but the model impact needs to be
further investigated. We plan to develop a solution, e.g., a
window- or cache-based mechanism. To also calculate the
duration of short-term flows correctly, a higher timestamp
resolution for the flow export would be required.



Moreover, the amount of flow data that needs to be pro-
cessed in a stream represents another challenge. To handle
flow data in time, a parallelization of data preparation steps
is necessary. Our solution is vertically scalable and requires
a central point for the data collection. Larger topologies
with higher data volumes would need an approach that is
horizontally scalable. At the same time, it must be ensured
that model training is done sufficiently on the observed data.

All pipeline stages support IPv4. While the used flow
collection also supports IPv6, all IP address operations need
to be modified to handle both address types.
Traffic Analysis and Data Distribution Although the flow
data has no inherent metric, t-SNE is a suitable tool for the
visualization of structural patterns. The t-SNE visualizations
clarify data similarities and analysis results provide a better
understanding of the flow data in our university network.

Based on all selected labels available for prediction, the
data is very unevenly distributed. Hence, the definition of class
boundaries (including the number of classes) is challenging.
Classes are defined based on the observed data distribution
to have an approximately equal number of samples for each
class, which is suited for DNN training. To ensure applicability
in practice, e.g., for adaptive flow routing, the adaption of
the boundaries is necessary. At the same time, sufficient data
samples for each class are required.

Network traffic contains a huge proportion of flow com-
munications that do not necessarily require prediction (e.g.,
short-term flows like DNS) and thus can be excluded.
Results of the Experiments Our experiments show that a
multi-class bit rate prediction for streamed flow data is feasible
with DNNs. Compared to binary classification, a multi-class
problem is more challenging. In contrast to using synthetic
data, a real-world network scenario represents a more credible
setup. Considering the prediction as two-class problem, our
exemplary experiments reach more than 90% accuracy.

Regarding the investigation of feature importance, pro-
cessing only the 5-tuple for the prediction achieves similar
results compared to considering all features. Here, the data
enrichment is less important (about +2%) but can provide
an increased accuracy in other scenarios. For example, in our
streaming experiments, an average improvement of up to about
+20% is achieved through the data enrichment.

Comparing the results, learning on a stream profits more
from enrichment. While the initial feature importance exper-
iments only consider a short time interval (10 blocks, 5 - 10
minutes), the streaming experiments are based on a week’s
worth of flow data. Due to more network dynamics during
the day, the accuracies are considerably less than at night.
These results are related to the number of encountered training
epochs, which depends on the amount of received flows.

In general, our pipeline setup supports a simultaneous eval-
uation of multiple machine learning models on a data stream.
As data collection and most parts of data preparation are
performed on the server side, the models can be implemented
on the client. Additionally, our streaming solution can replay
a stored dataset, either with raw or preprocessed flow data.

A statement about the generalizability of our approach
remains an open issue, because no comparable datasets exist
with which our solution can be further evaluated. Addition-
ally, reproducible simulations for practical transferability are
needed to evaluate the actual benefits in real environments.
Use-Cases The architecture in ?? can be deployed for various
flow routing scenarios, e.g., in network automation platforms.
First of all, forecasting can be used to enhance the performance
of a flow respectively maximizing its required resources.
A suitable path for a communication in the topology can
be determined based on the predicted flow characteristics.
Furthermore, flow-based prediction offers potential for the
optimization of link or path utilization in network devices
capable of using multiple outgoing links/paths (e.g., using
routing or multi-pathing), whereas a round-robin or hash-based
selection of the outgoing link to forward a flow’s packets can
result in uneven resource utilization respectively congestion.

Forecasting results can also be employed to implement
policing, shaping or other QoS-related constraints on the flows.

IX. CONCLUSION AND FUTURE WORK

We propose a flexible flow data stream processing pipeline
to train machine learning models (here DNNs) on real-world
network flow data for a flow-based bit rate prediction that
can be used for throughput optimization, improved network
utilization or flow routing. In our experiments, the forecasting
of a flow’s bit rate achieves an average accuracy of 82%
within a continuous interval of one week. To reproduce the
experiments, the codebase for the streaming setup and a
reference dataset are available. Instead of only differentiating
between large (elephant) and small (mice) flows, we use a
multi-class model. Generally, this allows a more fine-grained
classification for an improved network traffic engineering,
especially in combination with SDN.

To enhance the practical applicability, an appropriate def-
inition of classes (number and boundaries) that are currently
specified based on the data distribution and not on topology
information like link/path capacities is required. We plan to
evaluate data generation methods, e.g., Generative Adversarial
Nets [?], to compensate the imbalanced number of examples
for each class. A continuous adaption of the prediction model
based on network setup changes or seasonal effects is essential
to ensure a sustained prediction accuracy. Next to DNNs, other
online machine learning models need to be evaluated.

Forecasting results can serve as the basis for a prediction-
based flow routing. To evaluate this approach, a network
emulation environment based on Mininet [?] that contains the
architecture and the proposed controller components given in
?? is under development. Besides an adaptive routing, this in-
cludes advanced network monitoring mechanisms like network
telemetry. The consideration of classical and programmable
routing topologies allows the comparative evaluation of both
strategies.


