
Image Modeling with
Deep Convolutional Gaussian Mixture Models

Alexander Gepperth
Fulda University of Applied Sciences

Fulda, Germany
alexander.gepperth@cs.hs-fulda.de

Benedikt Pflb
Fulda University of Applied Sciences

Fulda, Germany
benedikt.pfuelb@cs.hs-fulda.de

Abstract—In this conceptual work, we present Deep Convolu-
tional Gaussian Mixture Models (DCGMMs), a new formulation
of deep hierarchical Gaussian Mixture Models (GMMs) that is
particularly suited for describing and generating images. Vanilla
(i.e., flat) GMMs require a very large number of components
to well describe images, leading to long training times and
memory issues. DCGMMs avoid this by a stacked architecture
of multiple GMM layers, linked by convolution and pooling
operations. This allows to exploit the compositionality of images
in a similar way as deep CNNs do. DCGMMs can be trained end-
to-end by Stochastic Gradient Descent. This sets them apart from
vanilla GMMs which are trained by Expectation-Maximization,
requiring a prior k-means initialization which is infeasible in a
layered structure. For generating sharp images with DCGMMs,
we introduce a new gradient-based technique for sampling
through non-invertible operations like convolution and pooling.
Based on the MNIST and FashionMNIST datasets, we validate
the DCGMMs model by demonstrating its superiority over flat
GMMs for clustering, sampling and outlier detection.

Index Terms—Deep Learning, Gaussian Mixture Models,
Deep Learning, Deep Convolutional Gaussian Mixture Models,
Stochastic Gradient Descent

I. INTRODUCTION

This conceptual work is in the context of probabilistic image
modeling, whose main objectives are both density estimation
and image generation (sampling). Since images usually do not
precisely follow a Gaussian mixture distribution, such a treat-
ment is inherently approximative in nature. Image generation
is currently very active research topic, and similar techniques
are being investigated for generating videos [9], [25].

An issue with many recent approaches is the lack of den-
sity estimation capacity, i.e., explicitly expressing the learned
probability-under-the-model p(x) of an image x.

In contrast, GMMs explicitly describe the distribution
p(X), given by a set of training data X = {xn}, as
a weighted mixture of K Gaussian component densities
N (x;µk,Σk)≡Nk(x):

p(x) =

K∑
k

πkNk(x). (1)

Conceptually, GMMs are latent-variable models: it is assumed
that the unobservable (latent) variable z determines from

which component a data vector x has been sampled, which is
expressed as

p(x, z) = πzNz(x) (2)

Marginalizing the latent variable in Eq. (2), we obtain Eq. (1).
GMMs require the mixture weights to be normalized:∑
k πk = 1 and the covariance matrices to be positive definite:

xTΣkx> 0 ∀x. The quality of the current fit-to-data is
expressed by the (incomplete) log-likelihood

L(X) = En

[
log
∑
k

πkNk(xn)

]
, (3)

which is what GMM training optimizes, usually by variants of
Expectation-Maximization (EM) [4]. It can be shown that any
distributions can, given enough components, be approximated
by mixtures of Gaussians [11]. Thus, GMMs are guaranteed
to model the complete data distribution, but only to the extent
allowed by the number of components K.

In this respect, GMMs are similar to flat neural networks
with a single hidden layer: although, by the universal ap-
proximation theorem of [26] and [14], they can approximate
arbitrary functions (from certain rather broad function classes),
they fail to do so in practice. The reason for this is that the
number of required hidden layer elements is unknown, and
usually beyond the reach of any reasonable computational
capacity. For images, this problem was largely solved by
introducing deep Convolutional Neural Networks (CNNs).
CNNs model the statistical structure of images (hierarchical
organization and translation invariance) by chaining multiple
convolution and pooling layers. Thus the number of parameters
can be reduced without compromising accuracy .

A. Objective, Contribution and Novelty

The objectives of this article are to introduce a GMM ar-
chitecture which exploits the same principles that led to the
performance explosion of CNNs. In particular, the genuinely
novel characteristics are:
• conceptually new formulation of deep GMMs, including

convolution and pooling operations
• scalable end-to-end training by SGD from random initial

conditions (no k-means initialization)
• efficient large-scale training on high-demensional images

• realistic sampling despite non-invertible operations (pooling,
convolutions)

• better empirical performance than vanilla GMMs on images
for sampling, clustering and outlier detection

In addition, we provide a publicly TensorFlow implementation
which supports a Keras-like flexible construction of DCGMM
instances.

B. Related Work
GANs and VAEs The currently most widely used models of
image modeling and generation are GANs [1], [12], [22] and
VAEs. Generative Adverserial Networks (GANs) are capable
of sampling photo-realistic images [28], but are unable to
perform density estimation since there is no way to obtain
p(x) for a given sample x. Furthermore, their probabilistic
interpretation remains unclear since they do not possess a
differentiable loss function that is minimized by training. They
may suffer from what is termed mode collapse, which is
hard to detect automatically due to the absence of a loss
function [28]. Variational Autoencoders (VAEs) show simi-
lar performance when it comes to sampling, in addition to
minimizing a differentiable loss function. On the other hand,
density estimation with VAEs is problematic as well. Similar
approaches, with similar strength in sampling but lack of
density estimation, are realized by the PixelCNN architecture
[23] and GLOW [18] and their variants.
Hierarchical GMMs A straightforward hierarchical extension
of GMMs is presented by [20] with the goal of unsupervised
clustering: responsibilities of one GMM are treated as inputs
to a subsequent GMM, together with an adaptive mechanism
that determines the depth of the hierarchy. [6] present a compa-
rable, more information-theoretic approach but not targetting
sampling either. The closest related work the model we present
here is described in [30]–[32]. All of these models perceive
hierarchical GMMs as modular decompositions of GMMs that
are really flat. The conceptual foundation is that sampling from
a GMM implies the transformation of a normally distributed
latent variable z by a single GMM component k, with weight
πk, z as y = Akz + βk + εk. This leads to a distribution
y ∼ N (βk,AkA

T
k + εk). The choice which GMM compo-

nent is allowed to transform the latent variable is based on
component weights πk. Hierarchical GMMs are now realized
by several such sampling steps (layers), the sampling results
of the previous layer representing the latent variable to be
transformed by the next one. None of these models consider
convolutional or max-pooling operations which have been
proven to be important for modeling the statistical structure
of images.
Mixture of Factor Analyzers (MFAs) MFAs models [8], [21]
can be considered as hierarchical GMMs because they are
formulated in terms of a lower-dimensional latent-variable rep-
resentation, which is mapped to a higher-dimensional space.
The use of MFAs for describing natural images is discussed
in detail in [28], showing that the MFA model alone, without
further hierarchical structure, compares quite favorably to
GANs when considering image generation.

Hierarchical Mixture Models An interesting overview of the
current research landscape in terms of hierarchical generative
mixture models is given in [16]. All of these models are, in
principle, capable of sampling and density estimation although
the quality of sampling, and the data they can be trained
on, vary considerably. Principal competitors in this domain
are Sum-Product Networks (SPNs, see, e.g., [27]), which are
tree structures of arbitrary depth, with leaves that represent
tractable distribution families (typically multi-variate normal,
binomial or student-t distributions). SPN nodes perform either
weighted summation or multiplication, and with appropriate
constraints on the tree structure it can be shown that sampling,
inference and density estimation remain tractable. Problems
include finding a suitable SPN structure, and dealing with
complex and high-dimensional data. Convolutional extensions
of the SPN model exist, although they have been applied to
very small images only [2]. A similar approach is represented
by probabilistic circuits (PCs, see, e.g., [24]) or Tensorial
Mixture Models (TMMs, see, e.g., [29]).

Convolutional GMMs The only work we could identify
proposing hierarchical convolutional GMMs is [10], although
the article describes a hybrid model where a CNN and a GMM
are combined.

SGD and End-To-End Training for GMMs Training GMMs
by Stochastic Gradient Descent (SGD) is challenging due to
local optima and the need to enforce model constraints, most
notably the constraint of positive-definite covariance matrices.
At the same time, SGD is attractive in deep architectures
due to its simplicity, which is facilitated even further by
modern machine learning packages that perform automatic
differentiation. SGD for GMMs has recently been discussed
in [15], although the proposed solution requires parameter
initialization by k-means and introduces several new hyper-
parameters. Thus, it is unlikely to work as-is in a hierarchical
structure. An SGD approach that achieves robust convergence
even without k-means-based parameter initialization is pre-
sented by [7]. Undesirable local optima caused by random
parameter initialization are circumvented by an adaptive an-
nealing strategy. SPNs and PCs can be trained end-to-end by
SGD as well, although no article describes this in detail. It
is presumable that data-driven initialization is required here,
as well. Previous hierarchical GMM proposals [30]–[32] use
(quite complex) extensions of the EM algorithm initialized by
k-means for training. In [28], training is performed using SGD,
although with a k-means initialization.

II. DATASETS

For the evaluation we use the following image datasets:

MNIST [19] is the common benchmark for computer vision
systems and classification problems. It consists of 60 000
28× 28 gray scale images of handwritten digits (0-9).

FashionMNIST [33] consists of images of clothes in 10
categories and is structured like the MNIST dataset.

Although these datasets are not particularly challenging for
classification, their dimensionality of 784 is at least one magni-

tude higher than datasets used for validating other hierarchical
GMM approaches in the literature.

III. DCGMM: MODEL OVERVIEW

The Deep Convolutional Gaussian Mixture Model (DCGMM)
is a hierarchical model consisting of layers in analogy to
CNNs.1 Each layer with index L expects an input ten-
sor A(L−1) ∈R4 of dimensions N,H(L−1),W (L−1), C(L−1)

and produces an output tensor A(L) ∈R4 of dimensions
N,H(L),W (L), C(L). Layers can have internal variables θ(L)

that are adapted during SGD training.
An DCGMM layer L has two basic operating modes (see

Fig. 1): for (density) estimation, an input tensor A(L−1) from
layer L− 1 is transformed into an output tensor A(L). For
sampling, the direction is reversed: each layer receives a
control signal T(L+1) from layer L+ 1 (same dimensions as
A(L)), which is transformed into a control signal T(L) to layer
L− 1 (same dimensions as A(L−1)).

A. Layer Types

We define four layer types: Folding (F), Pooling (P), Linear
Classifier (C) and GMM (G). Each implements distinct oper-
ations for both modes, i.e., estimation and sampling.

1) Folding Layer: For density estimation, this layer
performs a part of the well-known convolution operation
known from CNNs. Based on the filter sizes f

(L)
X , f (L)

Y

as well as the filter strides ∆
(L)
X , ∆

(L)
Y , all entries of the

input tensor inside the range of the sliding filter window
are dumped into the channel dimension of the output
tensor. We thus obtain an output tensor of dimensions
N,H(L) = 1 +

H(L−1)−f(L)
Y

∆
(L)
Y

, W (L) = 1 +
W (L−1)−f(L)

X

∆
(L)
X

and

C(L) =C(L)f
(L)
X f

(L)
Y , whose entries are computed as

A(L)
nhwc = A(L−1)

nh′w′c′ with h=h′/f
(L)
Y , w=w′/f

(L)
X and

c= c′+
(
(h′−h∆

(L)
Y)f

(L)
X +w′−w∆

(L)
X

)
C(L−1) + c′.

When sampling, it performs the inverse mapping which
is not a one-to-one correspondence: input tensor elements
which receive several contributions are averaged over all
contributions.

2) Pooling Layer: For density estimation, pooling layers
perform the same operations as standard (max-)pooling layers
in CNNs based on the kernel sizes k

(L)
Y , k(L)

X and strides
∆

(L)
X , ∆

(L)
Y . When sampling, pooling layers perform a simple

nearest-neighbor up-sampling by a factor indicated by the
kernel sizes and strides.

3) GMM Layer: This layer type contains K GMM com-
ponents, each of which is associated with trainable param-
eters πk, µk and Σk, k= 1 . . .K, representing the GMM
weights, centroids and covariances. What makes GMM layers
convolutional is that they do not model single input vectors,
but the channel content at all positions h,w of the input
A(L−1)

n,w,h,:, using a shared set of parameters. This is analog
to the way a CNN layer models image content at all slid-
ing window positions using the same filters. A GMM layer

1Repository: https://gitlab.cs.hs-fulda.de/ML-Projects/dcgmm

thus maps the input tensor A(L−1) ∈RN,H(L−1),W (L−1),C(L−1)

to A(L) ∈RN,H(L−1),W (L−1),K , each GMM component k ∈
{1, . . . ,K} contributing the likelihood A(L)

nhwk of having gen-
erated the channel content at position h,w (for sample n
in the mini-batch). This likelihood is often referred to as
responsibility and is computed as

pnhwk

(
A(L−1)) = Nk

(
A(L−1)

nhw: ;µk,Σk

)
A(L)
nhwk ≡

pnhwk∑
c′ pnhwc′

.
(4)

For training the GMM layer, we optimize the GMM log-
likelihood L(L) for each layer L:

L(L)
hw =

∑
n

log
∑
k

πkpnhwk(A(L−1))

L(L) =

∑
hw L

(L)
hw

H(L−1)W (L−1)

(5)

Training is performed by SGD according to the technique, and
with the recommended parameters, presented by [7], which
uses a max-component approximation to L(L). In sampling
mode, a control signal T(L) is produced by standard GMM
sampling, performed separately for all positions h,w. GMM
sampling at position h,w first selects a component by drawing
from a multinomial distribution. If the GMM layer is the last
layer of a DCGMM instance, the multinomial’s parameters are
the mixing weights π: for each position h,w. Otherwise, the
control signal T(L+1)

nhw: received from layer L+ 1 is used. It is
consistent to use the control signal for component selection in
layer L, since it was sampled by layer L+ 1, which was in
turn trained on the component responsibilities of layer L, see
Sec. VI. The selected component (still at position h,w) then
samples T(L)

nhw:. It is often beneficial for sampling to restrict
component selection to the S components with the highest
control signal (top-S sampling). This reduces the diversity of
sampling (since less components can participate), but improves
its quality (since selection is restricted to the most likely
components).

4) Linear Classifier Layer: This layer type implements
a linear classifier, trained in a supervised fashion by cross-
entropy loss. Logits are obtained via an affine transformation
A(L) = Â

(L−1)
W (L) +b(L) from the flattened input activities

Â
(L−1)

∈ RN×HWC . The logits have the dimension N ×K,
with K representing the number of classes or categories.
For sampling, a control signal is generated by approximately
inversing this transformation: T(L−1) = W (L),T T(L) − b(L),
where T(L) ∈ RN×K contains the one-hot coded classes for
each sample to be generated.

B. Architecture-Level Functionalities

1) End-to-End Training: To train an DCGMM instance, we
optimize L(L) for each GMM layer L by vanilla SGD2, using
learning rates ε(L). This is different from a standard CNN
classifier, where only a single loss function is minimized,

2Advanced SGD strategies like RMSProp [13] or Adam [17] seem incom-
patible with GMM optimization.

https://gitlab.cs.hs-fulda.de/ML-Projects/dcgmm

Input

32×32×3

sampling

estimation

Folding

Filter: 5×5
Stride: 1×1

28×28×75

GMM

K: 49

28×28×49

Pooling

Kernel: 5×5
Stride: 2×2

14×14×49

GMM

K: 25

13×13×25

Folding

Filter: 2×2
Stride: 1×1

13×13×196

Fig. 1. Illustration of a DCGMM instance containing all layer types, with exemplary dimensionalities and parameters for each layer.

usually a cross-entropy loss computed from the last layer’s
outputs. Learning is not conducted layer-wise but end-to-end.
Parameter initialization for GMM layers selects the initial
values for the mixing weights as πk =K−1, centroid elements
sampled from µkl ∼ U[−0.01,0.01] and diagonal covariances are
initialized to unit entries. To ensure convergence, training is
conducted in two phases. In the first phase, only centroids are
adapted, whereas both centroids and precisions are adapted in
the second.

2) Density Estimation and Outlier Detection: Outlier de-
tection requires the computation of long-term averages in
all layers and positions, EnL(L)

nhw and variances Varn(L(L)
nhw)

over the training set, preferably during a later, stable part of
training. Thus, for every layer and position h,w, inliers are
characterized by

L(L)
hw ≥ B(L)

hw ≡ EnL(L)
nhw − c

√
Varn(L(L)

nhw) . (6)

A larger c implies a less restrictive identification of inliers.
Assuming that the topmost GMM layer is global

(h=w= 1), Eq. (6) reduces to a single condition that deter-
mines whether the sample, as a whole, is an inlier. However,
we can also localize inlier/outlier image parts by evaluating
Eq. (6) in lower GMM layers.

3) Sampling and Sharpening: Sampling starts in the highest
layer L, assumed to be an GMM layer, and propagates
control signals downwards (see Fig. 1 and Sec. III-A3),
with control signal T(L) constituting the sampling result.
Sampling suffers from information loss due to the non-
invertible mappings effected by Pooling and Folding layers.
To counteract this, a Folding or Pooling layer at L − 1
performs sharpening on the control signal T(L−1) it generates
from T(L). This involves computing L(L)(T(L−1)) for the
GMM layer at level L and performing G gradient ascent
steps T(L−1)

nhwc →T(L−1)
nhwc + εs∂L(L)/∂T(L−1)

nhwc . The reason for
sharpening is that filters in Folding layers usually overlap,
and neighboring filter results are correlated. This correlation is
captured by all higher GMM layers, and most prominently by
the next-highest one. Therefore, modifying T(L−1) by gradient
ascent will recover some of the information lost by pooling

or folding. After sharpening, the tensor T(L−1) is passed as
control signal signal to L− 2.

4) Conditional Sampling: By conditional sampling we
understand the ability so selectively produce samples from
a certain class. Obviously, this is possible only when the
DCGMM instance has a top-level linear classifier layer. We
proceed as in Sec. III-B3, except for the component selection
in the top-level GMM layer. For conditional sampling, we
simply train a linear classifier in the last layer L on the outputs
A(L−1) of the previous layer, and then approximately invert
this mapping given a certain class label to obtain a control
signal T(L) for sampling in layer L− 1.

5) In-Painting: This is a functionality where a corrupted
image, from which a part has been deleted, is supplied to a
trained DCGMM instance, which then completes the missing
parts. Here, we add an additional tweist by not informing the
model which parts of the image have been deleted. Rather,
a DCGMM should infer this on its own using its outlier
detection capability, see ??.

Mathematically, in-painting requires that we perform pos-
terior inference from a trained DCGMM. We shall consider
this kind of inference for a flat GMM first, and subsequently
generalize to DCGMMs.

Assuming that an image x is composed of two parts x1

and x2, where x2 is corrupted. To recover it, we wish to draw
samples from the distribution p(x2|x1). A simple computation
yield an expression that can be evaluated by re-introducing the
latent variable z of the GMM, see Eq. (2)):

p(x2|x1) =
p(x1x2)

p(x1)
=
∑
z

p(x1, z)

p(x1, z)

p(x2x1, z)

p(x1)
= (7)

=
∑
z

p(x2|x1, z)p(z|x1) ≡
∑
z

γzp(x2|x1, z).

(8)

This shows that the distribution we wish to sample from is
again a Gaussian mixture. The mixture coefficients are given
by the responsibilities γz = p(z|x1), whereas the component
densities can be simplified as p(x2|x1, z) ∼ p(x2x1, z). We
first draw a value z∗ from a multi-nomial distribution defined
by the γi, and then generate a sample x from component

TABLE I
CONFIGURATIONS OF DIFFERENT DCGMM ARCHITECTURES.

layer
ID 1L 2L-a 2L-b 2L-c 2L-d 2L-e 3L-a 3L-b

1 F(28,28,1,1) F(20,20,8,8) F(7,7,7,7) F(8,8,2,2) F(28,28,1,1) F(4,4,2,2) F(3,3,1,1) F(28,28,1,1)
2 G(25) G(25) G(25) G(25) G(25) G(25) G(25) G(25)
3 F(2,2,1,1) F(4,4,1,1) F(11,11,1,1) F(1,1,1,1) F(13,13,1,1) P(2,2) F(1,1,1,1)
4 G(36) G(36) G(36) G(36) G(36) F(4,4,1,1) G(25)
5 G(25) F(1,1,1,1)
6 P(2,2) G(25)
7 F(6,6,1,1)
8 G(49)

comment vanilla 1 conv. 1 conv. 1 conv. no 1 conv. 2 conv. no
GMM layer layer layer convolutions layer layers convolutions

probability p(x2x1, z
∗) of the Gaussian mixture. The part of

x that belongs to x1 is simply clamped when sampling.
In a DCGMM, we implement this procedure for every

position (h,w) in all GMM layers. We start at the top of the
hierarchy (layer O), where responsibilities are simply the ac-
tivities A(O) computed by forward-propagating the corrupted
input in estimation mode. The responsibilities are used to draw
z∗(h,w) for each position (h,w) as detailed above. Using z∗,
we obtain a control signal for layer O − 1 as

T(O)
hw: ∼ Nz∗(h,w)(·), (9)

which propagated downwards through pooling and folding
layers to the next-deeper GMM layer.

Since, for each GMM layer L < O, we want to in-paint
only those parts which are not corrupted, we combine the raw
control signal T(L) and the activities A(L) obtained in the
forward pass into a fused control signal

T̂
(L)

nhw: =

{
A(L)

nhw: if inlier at h,w
T(L)
nhw: if outlier at h,w

(10)

where outliers are determined as detailed in Sec. III-B2. Thus,
control signals fill in the activities that seem corrupted.

6) Variant generation: Variant generation is a special
case of sampling, where a template image is supplied and
the DCGMM generates similar ones. This requires forward-
propagating the template image in estimation mode through
the DCGMM, and subsequently sampling a control signal from
the top-level GMM layer O according to the obtained top-level
activities A(O)

hw:. For all layers L < O, sampling is performed
as detailed in Sec. III-B3. An interesting option is to control
the similarity to the template image: this can be done either
by selecting a suitable S for top-S-sampling, or by clamping
top-down signals to activities in higher DCGMM layers:

T(L) ≡ A(L−1) for L ≥ L̂, (11)

where L̂ >= is a free parameter. The closest match between
template image and generated image is to be expected for
L̂ = 0, whereas L̂ > O should result in very diverse results.

IV. EXPERIMENTS

We define various DCGMM instances (with 2 or 3 GMM
layers) for evaluation, see Tab. I, plus a single-layer DCGMM
baseline which is nothing but a vanilla GMM. A DCGMM
instance is defined by the parameters of its layers: Folding(fY ,
fX , ∆Y , ∆X), (Max-)Pooling(kY , kX , ∆Y , ∆X) and
GMM(K). Unless stated otherwise, training is always con-
ducted for 25 epochs, using the recommended parameters from
[7]. Sharpening is always performed for G= 1 000 iterations
with a step size of 0.1.

A. Sampling, Sparsity and Interpretability

We show that trained DCGMM parameters are sparse and have
a intuitive interpretation in terms of sampling. To this effect,
we train DCGMM instance 2L-a (see Tab. I). After training
(see Sec. III-B1), we plot and interpret the centroids of the
GMM layers 2 (G2) and 4 (G4). The centroids of layer 2 (left
of Fig. 2) are easily interpretable and reflect the patterns that
can occur in any of the 2× 2 input patches to layer G2 of
size 20× 20. The 36 = 6× 6 centroids of G4 (right of Fig. 2)
express typical responsibility patterns computed from each of
the 2× 2 input patches to G2, and can be observed to be very
sparsely populated. Another interpretation of G4 centroids can
be found in terms of sampling (see Sec. III-B3), which would
first select a random G4 component to generate a sample of
dimensions H,W,C = 1, 1, 2× 2× 5× 5 from it, and pass it
on as a control signal to G2. Traversing Folding layer 3 only
reshapes the control signal to dimension H,W,C = 2, 2, 5× 5,
depicted in the middle of Fig. 2. This signal controls com-
ponent selection in each of the 2× 2 positions in G2: due
to their sparsity, we can directly read off the components
likely to be selected for sampling at each position. G2 thus
generates a control signal whose 2× 2 positions of dimensions
H,W,C = 20, 20, 1 overlap in the input plane (this is resolved
by sharpening in Folding layer 1). In this case, it is easy to
see that sampling produces a particular representation of the
digit zero.

B. Outlier Detection

For outlier detection, we compare DCGMM architectures
from Tab. I, using the log-likelihood of the highest layer
as a criterion as detailed in Sec. III-B2. We first train a

DCGMM instance on classes 0-4, and subsequently use the
trained classes for inlier- and class 5-9 for outlier-detection.
We vary c in the range [−2, 2], resulting in different outlier
and inlier percentages. Fig. 3 shows the ROC-like curves thus
clearly indicate that the deep convolutional DCGMM instances
perform best, whereas deep but non-convolutional instances
like 2L-d and 3L-b consistently perform badly.

0 25 50 75 100
inliers kept (%)

0

25

50

75

100

ou
tli

er
s

ke
pt

 (%
)

1L
2L-a
2L-b
2L-c

2L-d
2L-e
3L-a
3L-b

0 25 50 75 100

inliers kept (%)

0

25

50

75

100

o
u
tl

ie
rs

k
ep

t
(%

)

1L

2L-a

2L-b

2L-c

2L-d

2L-e

3L-a

3L-b

Fig. 3. Visualization of outlier detection capabilities (different DCGMMs)
for MNIST (left) and FashionMNIST (right).

C. Clustering

We compare DCGMMs to vanilla GMMs using established
clustering metrics, namely the Dunn index [5] and the Davies-
Bouldin score [3]. The DCGMM instances from Tab. I are
tested on both image datasets. We observe (see Tab. II and
Fig. 3) that mainly the deep but non-convolutional DCGMM
instances perform well in clustering, whereas convolutional
instances, even if they are deep, are compromised. These
metrics do not measure the classification accuracy obtained
by clustering but intrinsic clustering-related properties.

TABLE II
TWO METRICS, DUNN INDEX (HIGHER IS BETTER) AND DAVIES-BOULDIN

(DB) SCORE (SMALLER IS BETTER), EVALUATED FOR ALL TESTED
DCGMM ARCHITECTURES ON MNIST AND FASHIONMNIST. BEST
RESULTS ARE MARKED IN BOLD. THE GIVEN NUMBERS ARE WORST

CASES OVER 10 RERUNS.

Dataset Metric
DCGMM 1L 2L-a 2L-b 2L-c 2L-d 2L-e 3L-a 3L-b

MNIST Dunn index 0.14 0.14 0.13 0.12 0.19 0.15 0.15
DB score 2.59 2.73 3.06 2.62 2.57 2.65 2.53

Fashion- Dunn index 0.14 0.15 0.16 0.15 0.11 0.11 0.096 0.13
MNIST DB score 2.37 2.77 2.62 2.7 2.40 2.92 3.2 2.35

D. Sampling and Sharpening

The results presented here were obtained by training on classes
0-4 of both datasets, and have to be confirmed by visual
inspection of generated samples. The restriction to classes 0-4
is purely for visualization purposes.

Fig. 5. Convolutional architecture is helpful for sampling: top-1 sampling
shown on FashionMNIST, for DCGMM architectures 1L (vanilla GMM,
upper left), 2L-d (non-convolutional 2-layer DCGMM, upper right), 2L-c
and 2L-e (both convolutional 2-layer DCGMMs). Please observe duplicated
samples in the non-convolutional architectures.

a) Effects of convolutional architectures: An important
property of DCGMM is the ability to analyze local input
patches. In this experiment, we evaluate sampling for various
two-layer architectures with different local patch (i.e., con-
volution filter) sizes: global (2L-d), large (2L-a), semi-local
(2L-c) and local (2L-e) and observe effects when performing
top-1-sampling. The results of Fig. 4 indicate that, as filter
sizes decrease, the diversity but also the sharpness of generated
samples increase, at essentially no additional computational
cost. Analogous FashionMNIST results are given in Fig. 5.

3,2

0,1

3,4

1,0 3,4
0,1

3,2 1,0

Fig. 2. Sampling from DCGMM instance 2L-a, see Tab. I. Shown are learned GMM centroids (left: G2, right: G4) and an illustration of sampling, having
initially selected the layer 4 component highlighted in red. In the middle, the selected G4 centroid is shown.

a a
b b

b

c

c

c

c a a a

a

a a
a

a

Fig. 4. Convolutional architecture is helpful for sampling: top-1 sampling
shown on MNIST for DCGMM architectures 1L (vanilla GMM, upper left),
2L-d (non-convolutional 2-layer, upper right), 2L-c (convolutional 2-layer,
lower left) and 2L-e (convolutional 2-layer, lower right). Please observe
duplicated samples in the non-convolutional architectures, marked by identical
red letters. This figure is larger than Fig. 5 so duplicated samples can be better
observed.

Fig. 6. Impact of higher values of S in top-S sampling, shown for DCGMM
instance 2L-c for MNIST and FashionMNIST. From left to right: S=2,5,10.

b) Controlling Diversity by Top-S-Sampling: Using in-
stance 2L-c, Fig. 7 demonstrates how sample diversity is
related to S: a higher value yields more diverse samples, but
increases the risk of generating corrupted samples or outliers.
As the FashionMNIST results show, a good value of S is
clearly problem-dependent.

c) Generating Sharp Images: Fig. 7 shows the effect of
sharpening for DCGMM instance 2L-c using top-1-sampling.
We can observe that the overall shape of a sample is not
changed but that the outlines are crisper, an effect visible

Fig. 7. Impact of sharpening on top-S-sampling with S=1, see Sec. III-B3,
shown for DCGMM instance 2L-c. Shown are unsharpened samples (left),
sharpened samples (middle) and differences (right). Samples at the same
position were generated by the same top-level prototype.

especially for FashionMNIST. Thus, sharpening does no harm
and rather improves the visual quality of generated samples.

V. PROBABILISTIC INTERPRETATION OF DCGMMS

A probabilistic interpretation of the DCGMM model is pos-
sible despite its complex structure. The simple reason is
that DCGMM instances produce outputs which are inherently
normalizable, meaning that the integral over an infinite domain
(e.g., data space) remains finite. Thus, DCGMM outputs can
be interpreted as a probability which is not the case for
DNN/CNNs due to the use of scalar products.

Here, we prove that GMMs are normalizable in the sense
that the integral of the log-probability L(x) = log

∑
k πkpk(x)

is finite. This holds for any GMM layer in a hierarchy
regardless of its input, provided that the input is finite (which
is assured because Pooling and Folding layers cannot intro-
duce infinities). For simplicity, we integrate over the whole
d-dimensional space Rd. Since the component probabilities
are Gaussian and thus strictly positive, and since furthermore
the mixing weights are normalized and ≥ 0, the sum is strictly
positive. Thus, it is sufficient to show that the integral over the
inner sum (the argument of the logarithm) is finite. We thus
have ∫

Rd

∑
k

πkpk(x)dx =
∑
k

πk

∫
Rd

pk(x)

=
∑
k

πk
√

det(2πΣ)
(12)

which is trivially finite because Gaussians are normalized.

VI. CONCEPTUAL AND PRACTICAL DIFFERENCES TO
OTHER HIERARCHICAL GMM MODELS

In this section, we wish to outline the main conceptual
differences to what we consider the closest related work,
namely the hierarchical GMM models presented in [30]–[32].
Although there are some differences between these works, they
share, as outlined in the introduction, the notion that a GMM

performs sampling by transforming what is termed a random
latent variable, which usually follows a simple distribution
like N (0, I).

To clarify a purely semantic point: In this work, and close
to the original derivation of the EM algorithm for GMMs
[4], we consider the latent variable z of a GMM to be the
one that enters into the complete-data log-likelihood of the
corresponding latent-variable model. Another point where we
differ in our terminology is that, for us, lower layers are closer
to the input in density estimation mode. The lowest layer has
index 1, counting upwards.

On the conceptual side, the cited models all share the
notion that the proposed deep GMMs have a one-to-one
correspondence to a flat model, which is actually the one
whose log-likelihood is optimized. Consequently, layers are
not optimized independently of each other, but are intrinsically
linked. This is most easily visible from the fact that the
component weights in each layer are not normalized: only
the aggregated weights of all sampling paths through the deep
model have this property.

In contrast, our model does not assume (or require) a one-
to-one correspondence to a flat GMM. The layers in our
model are GMMs in their own right, having, e.g., their own,
normalized weights and losses, and compute the posterior
probabilities γnj = p(zj = 1|xn) of their own latent variables.
The dependency between layers is realized simply by the fact
that posterior probabilities of one GMM layer are inputs to the
subsequent GMM layer (potentially after being transformed by
convolution and pooling layers).

The first practical consequence of this independent layers
type of formulation is that layers can be optimized inde-
pendently of each other. In particular, it is not necessary to
enumerate all possible paths through the deep GMM as in
[31] for training, which can only be done in approximation
anyway. Rather, normal GMM optimization is performed for
each layer, given the outputs of previous layers. This leads to
a huge gain in scalability, allowing to train deep GMMs with
many layers on high-dimensional data like images in a matter
of minutes.

Another consequence concerns the introduction of pooling
and convolution operations: since the layers of our model
are not constrained by joint a flat GMM assumption, we
are free to apply arbitrary transformations to their outputs
before passing these on to subsequent GMM layers. The
probabilistic interpretation of our model comes from the fact
that each GMM in the model is independent and thus has the
probabilistic interpretation that all GMMs share.

A last consequence concerns sampling: in our formulation
of deep GMMs, a single GMM layer is trained on (estimated)
latent variables from a preceding layer. When sampling, it
can generate a valid instance z of these latent variables.
Therefore, it is reasonable to use the generated z for selecting
the GMM component to sample from in layer X , instead of
the π(X). Of course, a suitable merging of both quantities
is possible. Sampling as described here is thus a non-linear
instead of an affine transformation, as it is modeled in related

work. Nevertheless, we retain the notion of paths through
the DCGMM instance, given by the components selected for
sampling in each layer. Since the number of paths grows
exponentially with the number of layers, deeper DCGMM
instances can describe much richer sample distributions.

VII. SUMMARY, DISCUSSION AND CONCLUSION

The Objective of the article was to establish the conceptual
foundations of deep GMM hierarchies (see also Sec. V)
that leverage important mechanisms from the CNN domain.
Conceptual differences and shared properties w.r.t. principal
related work are discussed in VI. Convolution and pooling
layers make it possible to apply the model to high-dimensional
image data with off-the-shelf hardware (typical training runs
take approximately 2 minutes on a GeForce GTX 1080).
Results show the illustration of important functionalities such
as outlier detection, clustering and sampling, which no other
work on hierarchical GMMs can present related to such high-
dimensional image datasets. We also propose a method to gen-
erated sharp images with GMMs, which has been a problem in
the past [28]. An interesting facet of our experimental results
is that non-convolutional DCGMMs seem to perform better
at clustering, whereas convolutional ones are better at outlier
detection and sampling.
A Key point is the compositionality in natural images. This
property is at the root of DCGMM’s ability to produce realistic
samples with relatively few parameters. When considering top-
S-sampling in a layer L with H(L)W (L) =P (L) positions,
the number of distinct control signals generated layer L is
SP (L)

. A DCGMM instance with multiple GMM layers {Li}
can thus sample

∏
L S

P (L)

different patterns, which grows
with the depth of the hierarchy and the number of distinct
positions in a layer, making a strong argument in favor of
deep convolutional hierarchies such as DCGMM. This is an
argument similar to the one about different paths through a
hierarchical MFA model in [31], [32], although the number of
paths grow more strongly for DCGMMs because sampling is
performed independently for each GMM position.
Practical advantages over other hierarchical models such
as [30]–[32] are most notably the introduction of convo-
lution and pooling layers. Our experimental validation can
therefore be performed on high-dimensional data, such as
images, with moderate computational cost, instead of low-
dimensional problems such as the artificial Smiley task or the
Ecoli and related problems. Our experimental validation does
not exclusively focus on clustering performance (problematic
with images) but on demonstrating the capacity for realistic
sampling and outlier detection. Lastly, training DCGMMs
by SGD facilitates efficient parallelizable implementations, as
demonstrated by the TF2 implementation we provide.
Next steps consist of exploring more DCGMM architectures,
mainly sampling, for generating natural images.

REFERENCES

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN.
2017.

[2] Cory J Butz, Jhonatan S Oliveira, André E dos Santos, and André L
Teixeira. Deep convolutional sum-product networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 3248–
3255, 2019.

[3] David L. Davies and Donald W. Bouldin. A Cluster Separation Measure.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
1(2):224–227, 1979.

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood
from Incomplete Data Via the EM Algorithm . Journal of the Royal
Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

[5] J. C. Dunn. A fuzzy relative of the ISODATA process and its use
in detecting compact well-separated clusters. Journal of Cybernetics,
3(3):32–57, 1973.

[6] Vincent Garcia, Frank Nielsen, and Richard Nock. Hierarchical Gaussian
mixture model. In 2010 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 4070–4073. IEEE, 2010.

[7] Alexander Gepperth and Benedikt Pflb. Gradient-based training of
gaussian mixture models in high-dimensional spaces, 2020.

[8] Zoubin Ghahramani and Geoffrey E. Hinton. The EM Algorithm for
Mixtures of Factor Analyzers. Compute, pages 1–8, 1997.

[9] Farhad Ghazvinian Zanjani, Svitlana Zinger, and Peter H. N. de With.
Deep convolutional gaussian mixture model for stain-color normalization
of histopathological images. In Alejandro F. Frangi, Julia A. Schnabel,
Christos Davatzikos, Carlos Alberola-López, and Gabor Fichtinger,
editors, Medical Image Computing and Computer Assisted Intervention
– MICCAI 2018, pages 274–282, Cham, 2018. Springer International
Publishing.

[10] Farhad Ghazvinian Zanjani, Svitlana Zinger, and Peter H. N. de With.
Deep Convolutional Gaussian Mixture Model for Stain-Color Normal-
ization of Histopathological Images. In Miccai, volume 1, pages 274–
282. Springer International Publishing, 2018.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[12] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. Advances in Neural Information Processing
Systems, 3(January):2672–2680, 2014.

[13] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Lecture 6.5
- RmsProp: Divide the gradient by a running average of its recent
magnitude, 2012.

[14] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural Networks,
2(5):359–366, 1989.

[15] Reshad Hosseini and Suvrit Sra. An alternative to EM for Gaussian
mixture models: batch and stochastic Riemannian optimization. Math-
ematical Programming, 181(1):187–223, 2020.

[16] Priyank Jaini, Pascal Poupart, and Yaoliang Yu. Deep homogeneous
mixture models: Representation, separation, and approximation. In
NeurIPS, pages 7136–7145, 2018.

[17] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic
optimization. 3rd International Conference on Learning Representa-
tions, ICLR 2015 - Conference Track Proceedings, pages 1–15, 2015.

[18] Diederik P Kingma and Prafulla Dhariwal. Glow: generative flow with
invertible 1× 1 convolutions. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pages 10236–
10245, 2018.

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2323, 1998.

[20] Ming Liu, Eric Chang, and Bei Qian Dai. Hierarchcial Gaussian mixture
model for speaker verification. 7th International Conference on Spoken
Language Processing, ICSLP 2002, pages 1353–1356, 2002.

[21] Geoffrey McLachlan and David Peel. Mixtures of Factor Analyzers.
pages 238–256, jan 2005.

[22] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial
Nets. pages 1–7, 2014.

[23] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt,
Alex Graves, and Koray Kavukcuoglu. Conditional image generation
with pixelcnn decoders. arXiv preprint arXiv:1606.05328, 2016.

[24] Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Martin Trapp, Guy Van den Broeck, Kristian Kersting, and
Zoubin Ghahramani. Einsum networks: Fast and scalable learning of
tractable probabilistic circuits. In International Conference on Machine
Learning, pages 7563–7574. PMLR, 2020.

[25] Aj Piergiovanni and Michael Ryoo. Temporal Gaussian mixture layer
for videos. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,

Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 5152–
5161, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[26] Allan Pinkus. Approximation theory of the MLP model in neural
networks. Acta Numerica, 8:143–195, 1999.

[27] Hoifung Poon and Pedro Domingos. Sum-product networks: A new
deep architecture. In 2011 IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pages 689–690. IEEE, 2011.

[28] Eitan Richardson and Yair Weiss. On GANs and GMMs.
Advances in Neural Information Processing Systems, 2018-
December(NeurIPS):5847–5858, 2018.

[29] Or Sharir, Ronen Tamari, Nadav Cohen, and Amnon Shashua. Tensorial
mixture models. arXiv preprint arXiv:1610.04167, 2016.

[30] Yichuan Tang, Ruslan Salakhutdinov, and Geoffrey Hinton. Deep
mixtures of factor analysers. Proceedings of the 29th International
Conference on Machine Learning, ICML 2012, 1:505–512, 2012.

[31] Aäron Van Den Oord and Benjamin Schrauwen. Factoring variations in
natural images with deep Gaussian mixture models. Advances in Neural
Information Processing Systems, 4(January):3518–3526, 2014.

[32] Cinzia Viroli and Geoffrey J. McLachlan. Deep Gaussian mixture
models. Statistics and Computing, 29(1):43–51, 2019.

[33] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. pages
1–6, 2017.

http://www.deeplearningbook.org

	Introduction
	Objective, Contribution and Novelty
	Related Work

	Datasets
	DCGMM: Model Overview
	Layer Types
	F Layer
	P Layer
	G Layer
	C Layer

	Architecture-Level Functionalities
	End-to-End Training
	Density Estimation and Outlier Detection
	Sampling and Sharpening
	Conditional Sampling
	In-Painting

	Experiments
	Sampling, Sparsity and Interpretability
	Outlier Detection
	Clustering
	Sampling and Sharpening

	Probabilistic Interpretation of DCGMMs
	Conceptual and practical differences to other hierarchical GMM models
	Summary, Discussion and Conclusion
	References

