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Abstract We present the ReST (Resilient Self-organizing
Tissue) model, a self-organized neural model based on an
infinitely often continuously differentiable (C∞) energy func-
tion. ReST extends older work on energy-based self-organizing
models [12] in several ways. First of all, it converts input-
prototype distances into neural activities that are constrained
to follow a log-normal distribution. This allows a problem-
independent interpretation of neural activities which facili-
tates, e.g., outlier detection and visualization. And secondly,
since all neural activities are constrained in particular to ex-
hibit a predetermined temporal mean, the convolution that is
contained in the energy function can be performed using the
so-called zero-padding with correction (ZPC) instead of pe-
riodic boundary conditions. Since periodic boundary condi-
tions impose much stronger constraints on prototypes, using
ReST with ZPC leads to markedly lower quantization er-
rors especially for small map sizes. Additional experiments
are conducted showing the worth of a C∞ energy function,
namely for novelty detection and automatic control of SOM
parameters.
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1 Introduction

This article is in the context of self-organized map (SOM)
models that have a continuous energy function. The lack of
such an energy function for the original SOM model [14] has
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Fig. 1: Six representative samples from each of the visual classification
datasets used in this study. From upper left to lower right: Devanagari,
FashionMNIST, MNIST and EMNIST.

been the subject of a multitude of articles [6,20], and sev-
eral proposals were made to remedy this problem. The ad-
vantages of models whose learning rule is derived from the
minimization of an energy function are numerous, while the
only disadvantages are that the existence of an energy func-
tion imposes strong constraints on the used learning rules. In
particular, it was shown that the original SOM learning rule
cannot be derived from a continuous energy function[12]. In
this article, we propose an energy-based model of a topolog-
ically self-organizing neural map which we term the ReST
(Resilient Self-organizing Tissue) model. The term ”resilient”
has been added because the proposed model contains an ad-
ditional mechanism that enforces log-normal neural outputs
and is thus robust against sudden changes in input statistics.
In general, one may cite the following advantages of energy-
based SOM models (which we experimentally validate in
this article for the energy-based ReST model):

– Estimation of learning success and parameter selec-
tion A big issue for SOMs is to know whether the model
has converged to a ”desirable” state. For problems that
do not allow a visual quality inspection of the learned
prototypes (such as can be performed for the MNIST
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benchmark), there is no universal criterion to determine
optimal values for the model parameters (final neigh-
bourhood radius, final learning rate, topology etc.), whereas
an energy function provides a scalar value that can be
compared.

– Proof of stability If a continuous energy function exists
and is bounded from below, this automatically guaran-
tees the eventual convergence of SOM learning.

– Use of advanced stochastic gradient descent meth-
ods With a continuous energy function, many widely-
used methods for performing stochastic gradient descent
(SGD) in the domain of deep learning can be transferred
to SOM learning. This is because methods such as RM-
SProp, Adam, AdaGrad, AdaDelta or ”normal” SGD [9],
which try to find ”good” minima of an energy function,
implicitly assume that such a quantity exists when adapt-
ing the meta-parameters of learning.

– Outlier detection When the energy (that is supposed
to be minimized by the learning process) suddenly in-
creases, this is a strong indication for a change in data
statistics and can thus be used for outlier or concept drift
detection. This latter property is especially relevant for
our own ongoing work on incremental learning methods[8].
Conversely, if there is no energy function, it is not even
very clear what quantity can be used for outlier detec-
tion, as there is no function that is minimized by learn-
ing.

Another novel point of ReST is the explicit enforcing of a
particular temporal probability distribution (at least up to to
the first and second moment) for all neural responses in a
layer. This allows to interpret neural responses in a problem-
independent way, which would not work for SOMs or other
neural models since distances or neural activities in gen-
eral are usually closely coupled to the problem that is being
learned. Since the constrained optimization algorithm used
for ReST learning achieves the desired statistical behavior
by controlling two additional parameter per neuron, the vi-
sualization of those parameters can itself give interesting in-
sights into the distribution of the training data, most promi-
nently about sample density and variance in the Voronoi cell
of a prototype.

1.1 Related work

Energy-based SOM modelsThere has been a huge amount
of primarily mathematical literature about SOMs. It was shown
conclusively in [6] that the original Kohonen learning rule
cannot be exactly derived from the minimization of any er-
ror function. In the same article, it is mentioned that the
Kohonen learning rule follows instead from the individual
minimization of per-neuron energy functions [20], but these
functions are very complex, non-unique and do not lend

themselves to a simple interpretation (e.g., minimization of
a distortion measure or similar). Another approach was pro-
posed by Kohonen[14] and taken further by Heskes[12]: in-
stead of finding error functions whose minimization would
lead to the Kohonen learning rule, these authors attempted to
very slightly modify the Kohonen rule such that an energy
function could be formulated. Obviously, the modification
should in no way impair the self-organization capabilities of
the model while allowing an intuitive interpretation through
a (preferably simple) energy function. A modification satis-
fying these requirements was proposed in [12,11], offering
a continuous energy function for discrete as well as continu-
ous data distributions. While this was an important theoret-
ical result, curiously enough there was no real follow-up in
terms of applications in data visualization and/or clustering,
which is surprising given the advantages an energy function
can offer for SOM training, see above. It may be supposed
that this lack of interest was due to the added computational
complexity (an additional convolution needs to be calcu-
lated), as well as the problems that convolutions encounter
at boundaries. Similar SOM variants having an energy func-
tion were proposed in [10] but they suffer from the same
”convolution problem”.

Data visualization using self-organized algorithms One
of the primary application of self-organizing maps has al-
ways been the visualization of high-dimensional data, see,
e.g., [7] which is particularly intuitive due to the topology-
preservation property of SOMs. Various measures can then
be superimposed on a visualization of prototypes, such as
average quantization error, hit count or U-matrix (distances
between adjacent prototypes), see [22]. A major interest in
computing such SOM-based data representations has always
been to understand the local properties of a data distribution
as represented by SOM prototypes[19]. This is something
that emerges automatically from the constrained-optimization
learning rule of the ReST model, which intrinsically requires
the computation of the first two moments of input-prototype
distances for each neuron, allowing an easy visualization
that offers a qualitatively new insight into the distribution of
the data. Other modern data visualization schemes include t-
SNE (Stochastic Neighbour Embedding, [18,21]) or SONE
(self-organized neighbour embedding ,[3]), which place great
emphasis on an as-correct as possible representation of the
data but do not (easily) give access to local statistics.

2 Methods and data

In all experiments, we use the ReST model as described in
Sec. 2.1, together with the visual classification datasets de-
scribed in Sec. 3.1.
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2.1 The ReST model

We assume a dataset (or a mini-batch) of input vectors xn ∈
Rk and a two-dimensional set of K ×K neurons with non-
negative activities ai ≥ 0, i = 1 . . . ,K2. It is convenient
to express activities computed for an input xn as a one-
dimensional vector an ∈ RK2

. A neuron with (linear) in-
dex i and coordinates xi, yi has an associated prototype
pi ∈ Rk, i = 1, . . . ,K2, as well as an K × K neigh-
bourhood matrix that we write as a one-dimensional vector
gi ∈ RK2

in analogy to the vector of activities. Differing
from the SOM model, each neuron furthermore possesses
two internal variables oi and si that play a role in enforcing
log-normal statistics for the activities an that are computed
as follows:

dni =

√
(pi − xn)

2 (1)

ãni = oi − sidni (2)

ani = exp (ãni) (3)

These internal variables, also denoted per-neuron parame-
ters, have the function of raising or lowering the geometric
mean (oi) and geometric standard deviation (si) of each neu-
ron’s activity such as to obtain certain target values for these
quantities. The log-normal distribution was chosen because
it can readily enforce sparsity of neural responses. Since
it is characterized by geometric mean and geometric stan-
dard deviation (which is multiplicative w.r.t. the geometric
mean), it is fundamentally asymmetric in nature. Demand-
ing a low geometric mean and a high geometric standard de-
viation will thus produce responses that are generally posi-
tive and low but can strongly deviate upwards (but not much
downwards) on occasion, which is very useful if, e.g., clas-
sification is performed on ReST activities.

The adaptation of the prototypes pi is now achieved by
minimizing the energy function

cni = 〈gi, log an〉 = 〈gi, ãn〉 (4)

E =
1

N

∑
n

〈cn,S (cn)〉 . (5)

The first equation essentially represents a convolution op-
eration as the per-neuron vectors gi are (for self-organized
models) represented by Gaussians centered on neuron i. Gen-
erally, one assumes such Gaussians to be periodic where
they exceed the map boundaries (for neurons that are close
to these boundaries). In this article, we investigate the possi-
bility to simply cut off the Gaussians at map boundaries but
to re-weigh them according to the part that is ”lost”.

The logarithm and the vector-valued softmax function
S(v) in eqn.(4) are applied in a component-wise fashion as

ei = exp(βvi) (6)

S(v)i =
ei∑
j ej
≡ Si, (7)

β being a parameter that controls the selectivity of the soft-
max: for higher β values, the output S(v) will tend to be
more strongly peaked, the maximal value closer to 1.0 and
the rest to 0.0. For lower β values, this relationship is in-
versed. The minimization of the energy function is performed
as a constrained optimization problem, the constraint being
that the temporal distribution of activities an is log-normal
with parameters µ and σ. This implies that log an (with
logarithm applied component-wise!) is normally distributed,
with the empirical mean and standard deviation µ̂, σ̂ coin-
ciding with µ, σ:

µ̂ ≡ 1

N

∑
n

log ani =
1

N

∑
n

ãni
!
= µ (8)

σ̂ ≡
√

1

N

∑
n

(log ai − µ̂)2 =

√
1

N

∑
n

(ãi − µ̂)2
!
= σ

(9)

From these requirements, the per-neuron parameters oi and
si can be determined unambiguously from the first two mo-
ments of the input-prototype distances

si =

√
σ2

d2i − di
2 (10)

oi = µ+ sidi, (11)

which can be computed empirically over a dataset of N sam-
ples:

di =
1

N

∑
n

dni (12)

d2i =
1

N

∑
n

d2ni (13)

In a mini-batch setting, we instead take averages over the
current mini-batch of N samples (the extreme case being
fully online learning where N = 1). If we wish to compute
the averages di and d2i over periods longer than the mini-
batch size N , we replace eqns.(12) by a composite method
that makes use of a moving average of mini-batches aver-
ages:

di(ν) = (1− αdN)di(ν − 1) + αd
∑
n

dni (14)

d2i (ν) = (1− αdN)d2i (ν − 1) + αd
∑
n

d2ni (15)

where variable ν expresses the number of the current mini-
batch. We scale the adaptation rate αd < 1 with the mini-
batch size N since a larger N implies that more samples are
used per step in eqn.(14), and thus adaptation can proceed
more quickly. Please note that a choice of αd = 0 would
turn off the moving average mechanism. In this case only
the current mini-batch would be considered, as it is the case
in eqn.(12).
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2.1.1 ReST learning rule

For performing gradient descent for the energy function of
eqn.(4), we take its derivative w.r.t. to the k-th element of
prototype i:

∂E

∂pik
=

∂

∂pik

1

N

∑
nj

cnjS(c)nj = (16)

=
1

N

∑
nj

(
S(cn)j

∂cnj
∂pik

+
∂S(c)nj
∂pik

cnj

)
= (17)

=
1

N

∑
nj

(
S(cn)j

∂cnj
∂pik

+ βS(cn)i (δij − S(cn)j)
)

(18)

where we have used the expression ∂jSi = βSi(δij − Sj)
for the derivative of the softmax function. If we assume that
the softmax function is parameterized such that it puts 1.0 at
the position of the maximal value (whose index is expressed
by ∗), and 0 everywhere else, we obtain:

∂E

∂pik
≈ 1

N

∑
n

∂cn∗
∂pik

(19)

and arrive at the update rule (with learning rate α

pi ← pi +
αsig∗i
2N

∑
n

pi − xn
||pi − xn||

(20)

where we have one more time designed the index of the best-
matching unit (BMU) by a star:

∗ = arg maxici (21)

If we had omitted the square root in the definition of input-
prototype distances in eqn. (1), we would have arrived at the
equivalent rule

pi ← pi +
αsig∗i
N

∑
n

(
pi − xn

)
(22)

which differs (for the online case ofN = 1) from the energy-
based SOM model proposed in [12] only by a factor of si
for each neuron. Regarding the original SOM model [15],
the additional difference is that the best-matching unit is
not determined from input-prototype distances but from the
convolution c of activities with the neighbourhood matrix
as given in eqn. (4). We can therefore see that the learning
rules (20,22) scale each neuron’s prototype adaptation by a
factor that is, by eqn. (10), inversely proportional to the vari-
ance of activities of that neuron. Thus, neurons whose pro-
totypes are either too unspecific or too generic (resulting in
uniformly low or high activations with low variance) receive
a competitive advantage. We also note that this mechanism
is self-limiting: increased prototype adaptation usually in-
creases the variance of a neuron’s activities, thus eventually
annulling the competitive advantage and leading to stable
competitive learning dynamics.

2.1.2 Implementation of constrained optimization

Minimizing the energy function (4) is performed by per-
forming repeated gradient descent steps using learning rule
(20) on the whole available training data set or mini-batch,
each step followed by an explicit enforcement of the con-
straints by applying eqn. (10), this again being followed by
an update of the averages using eqn.(12).

For speeding up convergence, the neighbourhood matrix
gi of neuron i is modelled as a Gaussian whose standard
deviation S(ν) is decayed exponentially over time, as it is
usual with SOMs:

gij = exp

(
− (xj − xi)2 + (yj − yi)2

2S(ν)2

)
(23)

In contrast to normal SOM learning we do not decay the
ReST learning rate α over time, since this complicates ad-
vanced gradient descent strategies and introduces unneces-
sary parameters. Additionally, we impose an initial period
without prototype adaptation where only the neural statis-
tics are adapted. This allows to perform ”adiabatic” proto-
type updates causing only small corrections to the already
converged oi and si, which avoids potentially problematic
feedback loops between the two adaptation processes. The
detailed training procedure, as well as the relevant parame-
ters, are detailed in Alg. 1.

2.1.3 Choice of ReST parameters

The self-adaptation process is governed by the parameters
µ and σ of the log-normal distribution that the activities ai
are required to obey, which raises the question of what their
intrinsic significance could be, especially within the context
of self-organizing maps and incremental learning. First of
all, from the properties of log-normal distributions we know
that the quantity eµ represents both the geometric mean and
at the same time the median of a log-normally distributed
variable, so essentially we could just fix a median value M
and compute µ = logM from it. The median for this distri-
bution is smaller but usually close to the arithmetic mean as
well so we can also see M as a rough indicator for the arith-
metic time average of a neuron’s activity. The quantity eσ is
sometimes termed the geometric standard deviation and can
be expressed as

eσ = exp

(√
1

N

∑
n

(
log

ani
eµ̂

)2)
=

= N

√
Πn exp

((
log

ani
eµ̂

)2)
= Egn

√
exp

((
log

ani
eµ̂

)2)
(24)

and is thus related to the geometric mean of the expres-

sion
√

exp
((

log ani
eµ̂

)2)
. This expresses the multiplicative
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Algorithm: Constrained ReST optimization

Parameters:

– nr of iterations T
– mini-batch size N
– initial and final neigh. radius S0, S∞
– learning rate α
– self-adaptation rate αd
– time parameters tA, t0 and t∞
– target values σ, M = eµ for self-adaptation
– softmax parameters: β = 300, applied 3 times

Result: trained prototypes pi
begin

Initialize all prototypes pi to small random values
;
Initialize moving averages di(0) = 0 and d2i = 0 ;
Initialize per-neuron parameters si = 0.5, oi = 0 ;
Compute decay time constant λ = − log(−S∞/S0)

t∞−t0
;
for mini-batch ν < T do

compute nb.radius S(ν) and learning rate
α(ν): begin

if ν < tA then α(ν) = 0, S(ν) = S0;
else if ν < t0 then α(ν) = α, S(ν) = S0;
else if ν < t∞ then α(ν) = α,
S(ν) = S0e

−λν ;
else α(ν) = α, S(ν) = S∞;

end
recompute nb. matr. gi based on S(ν) ;
select a random mini-batch xn, 0 < n < N ;
update prototypes pi according to eqn. (20) ;
enforce constraint using eqn. (10) ;
adapt averages di(ν) and d2i (ν) using eqn.
(14) ;

end
return pi

end
Algorithm 1: Mini-batch based learning with the ReST
model.

spread of values around their empirical geometric mean eµ̂,
regardless of the direction. Higher values of eσ will push
the activities further away from their geometric mean, forc-
ing them to be more specific, either close to 0 or far away
from it. We can thus think of σ as a parameter controlling
the sparsity of neural responses, which previous studies on
transfer functions for self-organized maps [17] found to be
an important factor for performing classification based on
SOM activities.

The actual values for µ and σ ultimately depend on the
chosen application: when, e.g., classification is performed
on the activities ai, then a low median and high sparsity

may be beneficial, so as to have generally low values ex-
cept those that exceed the median strongly. For outlier de-
tection, the precise values are less important since only the
deviation from the imposed probability distribution need to
be detected.

In order to guarantee identical functioning of the WTM
mechanism for variable map sizes, the softmax function needs
to be parameterized correctly, and more specifically as a
function of the number of neurons in the SOM. We therefore
need to set the parameter β such that qualitatively identical
behavior ensues for any map size. We measure identical be-
havior by demanding that the the maximal response of the
softmax function be ξ when given a vector x ∈ Rk that con-
sists of n − 1 times value B and 1 time value λB. Solving
this for β gives us the expression

β =
ln(ξ−1 − 1)− ln(n− 1)

B(1− λ)
(25)

The softmax function is a very useful tool for obtaining a
”hard” yet differentiable winner selection, in addition to al-
lowing a steady transition between ”hard” and ”soft” winner
selection. In some cases, problems can occur: first of all,
sensible choices for B and λ may be hard to obtain because
they depend on the learning dynamics. Furthermore, when
β > 700, numerical issues arise due to the exponentials in-
volved. Fortunately there is a simple rule-of-thumb solution
for both problems that consists of applying a softmax func-
tion with ”best guess” parameters several times in eqn. (4).
This complicates the gradient, but as long as the final soft-
max function gives a sufficiently hard winner assignment,
the learning rule (20) remains valid. Software frameworks
like TensorFlow can compute the gradient symbolically, so
even the exact gradient can be used regardless of how often
softmax was applied. We found that a three-fold application
was always sufficient to guarantee a unique winner selec-
tion.

The parameter S0 is usually made to depend on the map
size. A rule of thumb that always worked well is to choose
it proportional to the diagonal of the quadratic K ×K map,
i.e., S0 = K

4 . In contrast, classification experiments always
give best results the smaller S∞ is, so this is always fixed
at small values like S∞ = 0.01. The values of t0, tA and
t∞ can be determined empirically be requiring that i) self-
adaptation has occurred before tA ii) the energy function
has converged to a stable value before t0 and iii) that the en-
ergy function is as low as possible while still satisfying all
constraints at t∞. Here, we see the value of an energy func-
tion as it can be used to determine convergence, so these
parameters which for SOMs have to be obtained by visual
inspection, can be determined by cross-validation. By a sim-
ilar reasoning, a good value for the learning rate can be ob-
tained, where smaller values are always acceptable but lead
to increased training time. The mini-batch size is generally



6 Alexander Gepperth

Fig. 2: Visualization of the inverted re-weighting map χ−1
i for a 10x10

map and a neighbourhood radius of S = 2. It can be ob served that at
the center of the map the values are equal to 1.0 corresponding to the
fact that no correction for boundary effects is necessary there. In the
corners, where the convolution filter has the lowest overlap with the
distance map, correction factors grow strongly to compensate.

assumed to be N = 100 in this article. The self-adaptation
rate, αdN , should be chosen such that the constraints are ap-
proximately upheld during prototype adaptation, meaning it
will depend on the choice of α and is thus not a free param-
eter but can be indirectly obtained by cross-validation.

2.2 Implementing zero-padding with correction (ZPC)
boundary conditions with ReST

The convolution in eqn.(4) can exceed the boundaries of the
neural map, meaning that the Gaussian in the scalar prod-
uct can have nonzero values for indices larger than n or
smaller than 0. This problem has been long known in the
computer vision literature when dealing with image convo-
lutions [13], and is usually addressed by imposing particu-
lar boundary conditions. Traditional possibilities are zero-
padding where all elements that do not fall into the image
are treated as zero, or periodic boundary conditions where
the image is considered a torus in both dimensions, and thus
elements outside the image are taken from the opposite side
of the image. Whatever boundary conditions are imposed,
although they make convolution formally possible, they cor-
rupt the integrity of the convolved image at its borders be-
cause they infer values for the original image that do not
exist. Either, for zero-padding boundary conditions, convo-
lution results are weak because of many adjacent zero values
produced by the boundary conditions, or convolution results
are uncorrelated with their neighbourhood as the opposite
of the map influences the results. In this article, we pro-
pose a simple solution to this problem in the context of zero-
padding conditions: we statically re-weigh convolution re-
sults near the map borders according to the part of the

neighbourhood filter that falls outside the map. Without the
re-weighting, activities would fall off towards the map bor-
ders because larger and larger parts of the neighbourhood
filter are missing (or rather: applied to zeroes outside the
image, thus not giving a contribution). As a consequence,
units at the map border would effectively have no chance to
ever become BMUs and thus the representational capabili-
ties of the SOM would be impaired. The re-weighting is a
multiplicative unit-wise operation:

χi =
∑
j

gij

gij →
gij
χi

(26)

The re-weighting vector χ measures, at each point (xi, yi),
which fraction of the mass of the applied neighbourhood fil-
ter lies within the map, see Fig. 2. Inserted into the defi-
nition of the activity map c in eqn.(4), one perceives that
the introduction of the re-weighting map does not depend
on the model parameters (i.e., the prototypes pi) and thus
does not affect the learning rule other than by a position-
dependent constant factor. We will refer to this strategy of
treating boundary conditions as ”zero-padding with correc-
tion” (ZPC).

An alternative solution is to impose periodic boundary
conditions for the convolution in eqn.(4) by appropriately
calculating the per-neuron neighbourhood maps gi for every
neuron i. This solution is probably slightly faster to imple-
ment with existing optimized methods. It is the purpose of
this article to show that the ReST model can indeed work
for both types of boundary conditions, and that the proposed
ZPC boundary conditions achieve significantly lower quan-
tization errors (leaving all other parameters unchanged) be-
cause no constraints are imposed on prototypes close to the
map boundaries. This should be especially true for small
map sizes, in which we are particularly interested.

3 Experiments

The ReST model used in all experiments is implemented in
TensorFlow 1.5 [1] using the Python interface. The (quite
complex) gradient computation in analogy to eqns.(20,16)
are computed automatically by the software. For implement-
ing gradient descent for the energy function (4), we use again
TensorFlow to create a plain stochastic gradient descent op-
timizer from the computed gradient. The reason why we do
not use more advanced optimizers is that, very simply, it
is not necessary, although all of the optimizers mentioned
in the introduction can minimize the ReST energy function
equally well.
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Fig. 4: (best viewed in color) Different stages of ReST training on the MNIST dataset. Upper row, from left to right: ReST prototypes with
long-term geometric activity averages superimposed on them for times ν = 7000, 12000, 24000. Lower row, from left to right: ReST prototypes
with long-term geometric standard deviation averages superimposed on them for times ν = 7000, 12000, 24000. We can observe that activity
averages and deviations are strictly adhered to by inspecting the color bars at the side of each figure: the displayed colors are in a very close range
around the target values of 0.1 (eµ) and 3(eσ). Equally observable: a typical SOM-like topological organization of prototypes.

Fig. 5: (best viewed in color) Distribution of per-neuron parameters oi and si for MNIST, after convergence of the ReST layer at iteration 24000.
To be compared to rightmost column in Fig. 4 which corresponds to the same iteration. Comparison reveals that, although the values of geometric
mean and standard deviation are very uniform across the ReST layer (Fig. 4), the per-neuron parameters that achieve this uniformity are not,
because each neuron would have very different statistics without adaptation. ReST layer regions with low offsets indicate that these neurons would
have a high average activity without adaptation; a similar reasoning holds for the variances. Please compare as well to Fig. 3 for an interpretation:
”blue regions” in the right-hand plot reveal that data points are more dense in this region, whereas bright regions indicate that data points are far
apart.
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Fig. 6: (best viewed in color) Distribution of per-neuron parameters oi (offsets, upper row) and si (selectivities, lower row) for Devanagari
(left column), FashionMNIST(middle column) and EMNIST (right column) after convergence of the ReST layer at iteration 24000. Training was
performed on classes 1-9 of all datasets.

Table 1: Overview of each dataset’s detailed properties. Image dimensions are given as width × height × channels. Concerning data imbalance,
the largest percentual difference in sample count between any two classes is given for training and test data, a value of 0 indicating a perfectly
balanced dataset.

Dataset
Properties

image size
number of elements class balance (%)

train test train test
Devanagari 32× 32×1 18.000 2.000 0.3 2.7
EMNIST 28× 28×1 345.035 57.918 2.0 2.0
FashionMNIST 28× 28×1 60.000 10.000 0 0
MNIST 28× 28×1 55.000 10.000 2.2 2.4

3.1 Data

We select the following datasets (see Tab. 1). In order to
construct SLTs uniformly across datasets, we choose the 10
best-represented classes (or random classes if balanced) if
more are present.

MNIST [16] is the common benchmark for computer vi-
sion systems and classification problems. It consist of gray
scale images of handwritten digits (0-9).
EMNIST [4] is an extended version of MNIST with ad-
ditional classes of hand-written letters. There are different
variations of this dataset: we extract the ten best-represented
classes from the By Class variation containing 62 classes.
Devanagari [2] contains gray scale images of Devanagari
handwritten letters. From the 46 character classes (1.700 im-
ages per class) we extract 10 random classes.
FashionMNIST [23] consists of images of clothes in 10
classes and is structured like the MNIST dataset. We use this
dataset for our investigations because it is a “more challeng-

ing classification task than the simple MNIST digits data [23]”.

3.2 Experimental parameters and their justification

Unless stated otherwise, ReST parameters are chosen as fol-
lows (in the terms of Sec. 2.1): K = 10, N = 100, T =

30000, tA = 5000, t0 = 10000, t∞ = 20000, S0 = K/4,
S∞ = 0.1, αd = 0.01, α = 0.05, eσ = 3 and M =

eµ = 0.1. The initial neighbourhood radius is set smaller
(K/4) than usual for SOMs since we found that this has no
impact on results but allows for shorter convergence times.
The choices for µ and σ are mainly motivated by visualiza-
tion (relatively high geometric standard deviation and low
geometric mean so deviations are well visible). Softmax is
applied 3 times with a parameter of β = 500 which was em-
pirically found to be an excellent choice. The choices for tA,
t0 and t∞ might seem too low for a dataset of 60000 samples
such as MNIST, but bear in mind that the mini-batch size
has been set to N = 100, so 10000 iterations correspond
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to 1000000 processed samples, which should give the algo-
rithm ample time to converge. This holds for all the other
datasets described in Sec. 3.1 as well.

3.3 Preliminary experiment: intuitive interpretation of the
self-adaptation parameters

To better understand what the self-adaptation mechanism in
ReST actually does, we create a set of 10.000 two-dimensional
data points xi ∈ R2 which are drawn from a normal dis-
tribution with mean µ = (0.5, 0.5)T and standard devia-
tion Σ = 0.15. We subsequently train a ReST layer of size
K = 10 using the default parameters of Sec. 3.2. The final
prototype positions and values of the per-neuron parameters
si and oi are shown in Fig. 3 and show the following things:

– where data points are more dense(sparse), offsets oi are
lower(higher). This is intuitive since prototypes that re-
act to less frequently occurring samples need to have a
higher offset to maintain a constant average activity.

– where data points are more dense(sparse), parameters
si are higher(lower), meaning that a neuron will react
less(more) strongly to nearby samples. This is intuitive
as well, since a higher number of nearby samples would
mean a near-constant activity, with low variance, if neu-
rons could not become more selective in their reactions.

Fig. 3: (best viewed in color) Prototype positions overlaid in color
with per-neuron parameters oi (left) and si (right) when training a
ReST layer on a 2D normal distribution.

We therefore link the per-neuron parameters si to the se-
lectivity of the corresponding neuron.

These results show that ReST neurons can adapt to the sam-
ple density in their Voronoi cell, a behavior that closely mim-
icks self-adaptation mechanisms in biological neurons.

3.4 Self-organization and self-adaptation in the ReST
model

In this section we will demonstrate that the ReST model,
while differing from both the original SOM model [15] and
the energy-based ”Heskes model” [12], achieves the same
basic type of prototype self-organization. At the same time,
we will demonstrate the effectiveness of ReST’s self-adaptation
process as described in Sec. 2.1 and comment on its benefi-
cial effects. To this end, we will conduct simulations with all
datasets described in Sec. 3.1. ReST parameters are chosen
as described in Sec. 3.2. After convergence of the neigh-
bourhood radius to its asymptotic value at t∞, we wait for
another 6000 iterations to allow the energy function to stabi-
lize, then (if needed) statistics is collected for 1000 iterations
and subsequently evaluated. Histograms of all neural activi-
ties during these 1000 iterations are computed and compared
to the theoretical log-normal distribution determined by µ
and σ.

Self-organization From Fig. 4, it can be observed that
self-organization proceeds exactly in the same manner as in
a SOM, starting with a coarse ”global ordering” of proto-
types followed by refinement as S(ν) is decreased, show-
ing that ReST performs essentially the same function as a
SOM, only with convergence in 2D guaranteed and a self-
adaptation process that gives a probabilistic interpretation to
the computed activities.
Self-adaptation As can furthermore be seen in Fig. 7, the fit
between theoretical and measured distribution is generally
acceptable for all datasets, although of course a perfect fit is
not to be expected. This is because we only fit the first two
moments of the log activities to defined values. For a better
fit, at least the third moment of the log activities should be
controlled, which would however result in a more complex
constrained optimization scheme. Fig. 5 shows this homo-
geneity is achieved by quite heterogeneous settings of the
per-neuron parameters oi and si, see eqns. (1,10,11).

3.5 Boundary conditions and quantization error

This experiment investigates the effects of different bound-
ary conditions when training a ReST model described in
Sec. 2.1. In particular, we compare the ”zero-padding with
correction” (ZPC) strategy of Sec. 2.1 with periodic bound-
ary conditions. Periodic boundary conditions impose more
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Fig. 7: Activity histograms for neuron (4, 4) in a ReST layer trained on the Devanagari (left) and MNIST (right) problems, both for the case of
enabled (upper row) and disabled (lower row) self-adaptation. The theoretical log-normal density is superimposed onto the histograms as a solid
green line, showing a generally good match for both tasks.

Fig. 8: Quantization errors for an energy-based ReST layer, comparing periodic and ZPC boundary conditions, showing a clear difference between
the two conditions especially for small map sizes. A smaller map size manifests itself by higher final quantization errors, and it is evident that
larger maps suffer less from periodic boundary conditions than small ones.

constraints on prototypes as they are applied at every map
boundary. In contrast, ZPC boundary conditions impose no
constraints on prototypes at to the borders, leaving more
freedom to model the data faithfully. The basic quantity we
consider here is the so-called quantization error measure,
which for a sample xn and a set of prototypes {pi} is de-
fined as q(xn, {pi}) = mini ||xn − pi||, and which mea-
sures the capacity of prototypes to approximate input to a
ReST layer. The basic question we ask is: does the manner
of treating boundary conditions show up in the quantization
error of a ReST layer (see 2.1). To investigate this, we train
such a layer, with both kinds of boundary conditions on the
training set of the MNIST problem described in Sec. 3.1 and
measure its quantization error on the test set.

Map size is varied in the interval K = {5, 7, 10, 15} in
order to assess the influence of the map size. The other pa-
rameters are the same as in Sec. 3.2 except for T = 40000,
S∞ = 1.5 for K > 5 and S0 = 2.5, S∞ = 1.0 for K = 5.
This setting of S∞ differs from the preceding section where
S∞ is small. This would make neighbouring prototypes in-
dependent, which, in turn, would make the re-weighting map
a delta spike and thus eliminate the boundary correction ef-
fect. Boundary treatment intrinsically makes sense only for
not too small values of S∞.

We compare quantization errors on the MNIST test set
over time for both boundary condition types, results are given
in Fig. 8. As can be seen, the proposed ZPC boundary condi-
tions work and generate prototypes with consistently lower
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Fig. 9: Energy-based outlier detection for various map sizes. Shown is the percentage of rejected outliers plotted against the percentage of accepted
inliers. Upper row, left to right: MNIST, FashionMNIST. Lower row, left to right: Devanagari, EMNIST.

quantization errors than periodic boundary conditions can
reach, especially for small map sizes.

3.6 Energy-based rejection strategies

It is well known that SOM prototypes approximate the dis-
tribution of input vectors[5], and that the distance between
an input vector and the prototype of the BMU can be used
as a measure of a priori probability for this input vector.
In other words, inputs the ReST layer has rarely or never
seen will produce high distances dni as defined in eqn. (1)
and can thus be potentially identified. In this experiment,
we wish to determine whether the same holds for the anal-
ogous quantity of ReST models, the BMU activity cn∗, see
eqn. (1).

Concretely, we train a ReST layer with ZPC boundary
conditions of different map sizes K only on the classes 1
through 9 of all image recognition problems described in
Sec. 3.1 and treat samples of class 0 as outliers that should

be detected by imposing a threshold θ on the quantity cn∗:

class=
{

inlier if cn∗ > θ

outlier else

Training and test parameters are as described in Sec. 3.2 ex-
cept for K which is varied as K = {5, 7, 10, 15, 20, 30}. By
logging the responses of a trained ReST layer to test sam-
ples of the various datasets, and by varying the threshold θ,
we obtain rejection curves as shown in Fig. 9, each point
of which represents a different trade-off between retaining
inliers and suppressing background outliers.

It can be seen from Fig. 9 that the rejection strategy
based on the activity map works, and increasingly well so
with larger map sizes. The interesting point here is that the
basic quantity cn∗ = maxi cni used for rejection here is
nothing else but the (approximate) instantaneous energy of
the SOM given the current sample (since the softmax func-
tion will select only the maximal value from the sum in
eqn. 4). This means that, by optimizing the energy, one di-
rectly optimizes the quantity necessary for outlier detection,
which is an elegant and intuitive approach.
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Fig. 10: Development of the ReST neighbourhood radius S(ν) over time using an automated control strategy. Experiments differ only in the value
of the threshold θD that determines the upper limit on energy evolution that is allowed to consider the energy stationary. More restrictive values
of θD result in slower convergence of S, and in a slower decrease of the energy function. It may be noted that the evolution of S is reminiscent of
the exponential decay usually modeled when training self-organized models, only here it arises automatically from the specified control law.

3.7 Energy-based control strategies

As stated in the introduction, the behavior of the energy
function can give valuable hints about controlling the time-
dependent neighbourhood radius S(ν) in the ReST update
rule (20). As any change in S(ν) directly impacts, through
the activity map an, the energy function defined in (4), changes
to S(ν) should be adiabatic, i.e., small and effected only
when the energy is stationary. This is the key point of the
admittedly simplistic control strategy we adopt here, just to
show what an energy function can do for SOM users: the
detection of stationary states where no further adaptation is
happening. This is effected by first exponentially smoothing
the instantaneous energy values E(ν) from eqn. (4), com-
puted from the current mini-batch or sample with index ν,
subsequently computing a measure of how much the smoothed
energy changed in a characteristic time interval defined by
the constant τ :

Êτ (0) = 0

Êτ (ν) = (1− τ−1)Êτ (ν − 1) + τ−1E(ν)

D(ν) = 1− Êτ (ν)
Êτ (ν − τ)

(27)

and subsequently imposing a threshold on D(ν) to imple-
ment the following control strategy:

σ(ν) =

{
max

(
σ(ν − 1)ξ, σ∞

)
if 0 < D < θD

σ(ν − 1) else
(28)

Here, the parameters θD ∈ [0, 1] which determines how
strict the definition of stationarity should be, and ξ ∈ [0, 1]

which determines the decrease rate for S(ν) need to be spec-
ified. The time scale parameter τ controls both the speed of
exponential smoothing, as well as the time lag that is con-
sider for the determination of stationarity. For the experi-
ments of this section, we consider again the MNIST bench-
mark and train an energy-based ReST layer (with ZPC bound-

ary conditions) using the control rule of eqn. (28), with fixed
values of ξ = 0.95, τ = 1000 and variable values of θD =

{0.005, 0.0075, 0.01, 0.025}. The other ReST parameters are
as stated in Sec. 3.2, except for K = 10, T = 40.000,
t0 = 10000, t∞ = 30000 and S∞ = 1. The experimental
interval was chosen a bit longer and the convergence times
a bit less restrictive here to be able to well visualize the
development of S over time as a consequence of the cho-
sen control strategy. The control strategies differ only in the
strictness of the definition of stationarity, and will therefore
differ in their eagerness to trigger the next decrease step to
S(ν). As can, be seen in Fig. 10, all of these strategies are
effective in reducing energy over time, although at different
convergence speeds.

4 Discussion

We presented the ReST model, a significant extension of
the energy-based SOM model proposed in [12], character-
ized by the avoidance of periodic boundary conditions in
the convolution operations associated with the model. We
have shown that ReST layers behave just as SOMs would
w.r.t. the topological organization of prototypes, that neural
activities within can be successfully constrained to follow a
log-normal distribution with specified parameters, and that
ZPC boundary conditions achieve lower quantization errors
than periodic boundary conditions, especially for small map
sizes (see Sec. 3.5). We have furthermore shown that ReST
layers can use the instantaneous energy value E(ν) as a cri-
terion for rejecting outliers in a real-world visual classifi-
cation problems, and that the evolution of energy over time
can be used for implementing automated control strategies
for the time-dependent ReST parameter S(ν) that can re-
move the need to tune these time dependencies. Overall, we
can state that ZPC boundary conditions make energy-based
ReST layer a tool that can be used as routinely as normal
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SOMs, but with less parameters to be tuned and with the
energy function as a clear criterion for convergence. Fur-
thermore, there is no need to resort to exotic and often unde-
sirable periodic boundary condition that in any case reduce
the approximation capacity of any self-organized model (not
just an energy-based one).

4.1 Why ZPC works

The ZPC technique we introduced here is based on a simple
static re-weighting of convolution results that form the ac-
tivity map aij , see Sec. 2.1. The reason why this approach
works in ReST (but not, in general, for arbitrary images) lies
in the fact that we ensure the temporal averages of all activ-
ities an to be homogeneous throughout the map. This is not
the case for images, and thus the technique described here
cannot be generalized to image processing. The temporal av-
erage activity of cni of any ReST unit (after convolution) is
only dependent on the mass of the neighbourhood filter that
falls inside the map, which is a quantity that depends only on
that unit’s position and on nothing else. The correction that
fixes all map activities to homogeneous long-term values,
here termed the re-weighting map χ can therefore, for fixed
neighbourhood radius S, even be precomputed, but needs to
be re-calculated each time S changes.

5 Conclusion and future work

More elaborate control strategies for time-dependent SOM
parameters could very probably be devised (for example,
there is a clear dependency between θD and τ in Sec. 3.7
that can be used to eliminate one parameter) so as to ren-
der these strategies fully automatic, removing the need for
any parameter tuning during SOM training. Another, very
interesting perspective, both conceptually and from an ap-
plied perspective, is the adaptation of the local neighbour-
hood functions gi. Since the gi are included in the energy
function, there is no reason why they should not be opti-
mized by gradient descent as well, although a L1 constraint
would have to be imposed, and the learning rates for pro-
totype and neighbourhood adaptation would probably have
to be decoupled. In this way, outlier detection as performed
in Sec. 3.6 may become much more powerful since each
neuron i could consider only a learned subset of its neigh-
bours for the computation of cni instead of performing a
predefined and unspecific weighted summation. The energy
function of eqn. (4) gives rise to a Hebbian-type of learning
rule for the gi which is in itself interesting from a biological
modeling perspective. This potentially increases outlier de-
tection capacity of the ReST model will in turn benefit our
work on incremental learning algorithms [8].
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