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Abstract. Import recent advances in the domain of incremental or con-
tinual learning with DNNs, such as Elastic Weight Consolidation (EWC)
or Incremental Moment Matching (IMM) rely on a quantity termed the
Fisher information matrix (FIM). While the results obtained in this way
are very promising, the use of the FIM relies on the assumptions that a)
the FIM can be approximated by its diagonal, and b) that FIM diagonal
entries are related to the variance of a DNN parameter in the context
of Bayesian neural networks. In addition, the FIM is notoriously diffi-
cult to compute in automatic differentiation (AD) systems frameworks
like TensorFlow, and existing implementations require an excessive use of
memory due to this problem. We present the Matrix of SQuares (MaSQ),
computed similarly as the FIM, but whose use in EWC-like algorithms
follows directly from the calculus of derivatives and requires no addi-
tional assumptions. Additionally, MaSQ computation in AD frameworks
is much simpler and more memory-efficient FIM computation. When us-
ing MaSQ together with EWC we show superior or equal performance
to FIM/EWC on a variety of benchmark tasks.

1 Introduction

This article describes a study in the context of incremental or continual learn-
ing with deep neural networks (DNNs). Essentially, this means that a DNN is
not trained once, on a single task D, but successively on two or more sub-tasks
D1, . . . , Dn, one after another. Learning tasks of this type, which we term Se-
quential Learning Tasks (SLTs) (see Fig. 1a), are potentially very common in
real-world applications. They occur wherever DNNs need to update their capa-
bilities on-site and over time: gesture recognition, network traffic analysis, or face
and object recognition in mobile robots. In such scenarios, neural networks have
long been known to suffer from a problem termed “catastrophic forgetting”(CF)
(e.g., [4]) which denotes the abrupt and near-complete loss of knowledge from
previous sub-tasks D1, . . . , Dk−1 after only a few training iterations on the cur-
rent sub-task Dk (see Fig. 1b compared to Fig. 1c). In this article, we focus on
SLTs from the visual domain with two sub-tasks each, as DNNs show pronounced
CF behavior even when only two sub-tasks are involved.



2 A. Gepperth, F. Wiech

trainD1

testD1

sub-taskD1 sub-taskD2

trainD2

testD2

testD1∪D2

0 E 2E

testD1

(a) Training scheme

0 2500 5000 7500 10000

iteration

0.0

0.5

1.0

te
st

ac
cu

ra
cy

training D1 retraining D2

D2

D1

D1 ∪D2

(b) with CF

0 2500 5000 7500 10000

iteration

0.0

0.5

1.0

te
st

ac
cu

ra
cy

training D1 retraining D2

D2

D1

D1 ∪D2

(c) without CF

Fig. 1: Schema of incremental training experiments conducted in this article (a) and
representative outcomes with (b) and without CF (c). The sequential learning tasks
used in this study only have two sub-tasks: D1 and D2. During training (white back-
ground) and re-training (gray background), test accuracy is measured on D1 (blue, M),
D2 (red, #) and D1∪D2 (green, 2). The blue curve allows to determine the presence of
CF by simple visual inspection: if there is significant degradation w.r.t. the red curve,
then CF has occurred.

1.1 Related work

The field of incremental learning is large, e.g., [16] and [6]. Recent systematic
comparisons between different DNN approaches to avoid CF are performed in,
e.g., [22,11] or [18]. Principal recent approaches to avoid CF include ensemble
methods [21,2], dual-memory systems [23,10,19,5] and regularization approaches.
Whereas [7] suggest Dropout for alleviating CF, the EWC method [13] proposes
to add a term to the energy function that protects weights that are important for
the previous sub-task(s). Importance is determined by a quantity that is claimed
to approximate the Fisher information matrix of the DNN within a framework
of Bayesian neural networks inspired by works on the natural gradient in DNNS
[17]. A related approach is pursued by the Incremental Moment Matching tech-
nique (IMM) (see [15]), where weights from DNNs trained on current and past
sub-tasks are “merged” using a similar approximation to the Fisher informa-
tion matrix. Other regularization-oriented approaches are proposed in [1,24] and
[12] which focus on enforcing sparsity of neural activities by lateral interactions
within a layer.
Algorithms like EWC are in fact related to very old works on pruning neural
network weights [8,20,9], where the same goal is pursued: to estimate how ”im-
portant” a weight is for the performance of the neural network by analyzing
gradient information.

1.2 Motivation and goals of the article

We have been extensively analyzing [18] the performance of recently proposed
algorithms for incremental learning like EWC or IMM, see Sec. 1.1. While do-
ing so, we found that the computation of the FIM required for both methods
is both computationally expensive, as well as conceptually questionable since
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the mathematical justification is at best unclear, and contains assumptions (di-
agonality of the FIM) that are neither proven nor empirically demonstrated.
So the goal of the article is to propose a drop-in replacement for the FIM in
regularization-based approaches to incremental learning like EWC or IMM that
is both efficient to compute, and has a solid theoretical foundation which requires
no unclear assumptions. The Matrix of SQuares (MaSQ) that we propose here
has all of these properties, and we wish to empirically verify that incremental
learning with EWC works just as well when using the MaSQ.

2 Methods

2.1 Dataset and construction of sequential learning tasks

We construct several sequential learning tasks (SLTs) from MNIST [14], a com-
mon benchmark for visual classification problems. It consists of 70.000 gray scale
images of handwritten digits (0-9) of size 28x28, containing 55.000 training and
10.000 test samples that are approximately equally distributed over 10 classes.
While MNIST may be considered too simple as an outright classification prob-
lem, we recently showed [18] that virtually all approaches to incremental or con-
tinual learning fail on simple two-task SLTs constructed from MNIST already,
so MNIST-derived SLTs definitely do constitute adequate benchmarks here. We
construct three types of two-task SLTs (defined by sub-tasks D1 and D2) from
MNIST, which we term DP10-10 (“permuted”), D9-1 (“disjoint 9-1”) and D5-5
(“disjoint 5-5”). The constructions given below apply equally to training, test
and validation sets contained in MNIST.

Permuted SLT (DP10-10) This SLT is created by defining sub-task D1 as
the original MNIST benchmark containing all 10 classes, and adding sub-task
D2 as a copy of D1 where copied samples all have their pixels spatially permuted
in the same fashion. This is a benchmark that is widely used in studies on incre-
mental learning, which we include for reference. As we could show[18], caution
is required when using this benchmark as it seems to intrinsically facilitate in-
cremental learning, probably because the patterns in D1 and D2 have very little
overlap.

Disjoint SLTs (D9-1 and D5-5) These SLTs are created by defining D1 as all
samples from zero to eight (zero to four for D5-5) classes from MNIST, whereas
D2 is defined by the remaining classes (one for D9-1, five for D5-5).

2.2 DNN models and hyper-parameters

We employ simple fully-connected DNNs with EWC regularization, consisting
of L ∈ {2, 3} layers, all having an identical size of S ∈ {200, 400, 800}, and
using the standard ReLU transfer function. We distinguish two learning rate
parameters ε1 = 0.001 and ε2 ∈ {0.001, 0.0001, 0.00001, 1e−06} for the two sub-
tasks. Presence and effect of EWC regularization is governed by the balancing
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parameter λ ∈ {0, 0.1ε1 ,
1
ε1
, 10ε1 }. Since we are dealing with classification problems,

cross-entropy is used as a loss function LCE. Mini-batch size in stochastic gra-
dient descent (SGD) optimization is always set to B = 100.

2.3 Elastic Weight Consolidation with FIM and MaSQ

In [13,15], the EWC loss function for training on sub-task D2 is given as

L =
λ

2
LCE +

∑
k

Fk(θk − θD1

k )2 (1)

where the complete parameter set of a DNN (weight and biases) is denoted by θ,
Fk describes the diagonal entries of the FIM (or MaSQ entries, see below), and
θD1 represents the complete set of stored parameters (again weights and biases)
after having trained the DNN on sub-task D1. In order to best describe our
implementation of EWC (with FIM or MaSQ), we change the notation from the
abstract parameter vector θ of the DNN (as used in [13]) in favor of explicitly
denoting the DNN weight matrices W i and the bias vectors bi, i ∈ {0, . . . , L−1}.
The EWC loss function used for re-training on D2 then reads, in this notation:

L = LCE +
λ

2

L−1∑
i=0

∑
kl

FW
i

kl

(
W i
kl −W i,D1

kl

)2
+

+
λ

2

L−1∑
i=0

∑
k

F b
i

k

(
bik − bi,D1

k

)2
(2)

where we introduce the “lagged variables” W i,D1 , bi,D1 as specified in [13], and

the coefficient matrices FW
i

and coefficient vectors F b
i

that correspond to FIM
diagonal elements or MaSQ entries for the different weight matrices and bias
vectors, both computed after training on D1 is completed.

We implement the EWC algorithm for a two-task SLT by the following strategy:

– train the DNN normally on D1, using a balancing parameter of λ = 0
– copy weight matrices and bias vectors to the set of lagged variables
– perform a single pass through the training data (one epoch) without modi-

fying weights or biases, for FIM or MaSQ computation (only the gradients
are required)

– train the DNN on D2, keeping the previous values of weights and biases, and
using either FIM or MaSQ with a nonzero EWC balancing parameter λ

– test on D2 and D1 ∪D2 during re-training on D2

2.4 A critical discussion of FIM derivation and computation

The expression given in [13,15,17] for computing the FIM reads (again denoting
the ensemble of DNN parameters as θ as in [13]):

Fij ≡
1

N

∑
n

(
∂L
∂θi

∂L
∂θj

∣∣∣
xn

)
, (3)
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where the expectation value is taken over all N training samples, indexed by n.
In [13,15], the FIM is assumed to be diagonal, so these authors use only the

quantity

F ≡ diag (Fij) (4)

Fj ≡
1

N

∑
n

(
∂L
∂θj

∣∣∣
xn

)2

, (5)

although this simplification is not proven, nor is it, given the generality of eqn.(3),
very likely to hold in general. In our notation, the FIM (with diagonal assump-
tion) is written as

FW
i

jk ≡
1

N

∑
n

(
∂L
∂W i

jk

∣∣∣
xn

)2

(6)

F bi

j ≡
1

N

∑
n

(
∂L
∂bij

∣∣∣
xn

)2

We will verify FIM diagonality experimentally in Sec. 3.3.
A second point we like to raise is the utilization of the FIM diagonal in the

EWC mechanism, given in its general form in eqn.(1), which is simply postulated
in [13] and roughly justified as FIM diagonal entries Fk being equivalent to the
certainty of parameter θk, and thus being a measure for its inverse variance in a
Bayesian NN picture in [15]. The main justification of using FIM diagonal entries
in [13,15] seems to be that the obtained results are very promising and give good
results. We feel, however, that perhaps even better results could be obtained
when using quantities in the EWC loss of eqn. (1) whose computation requires no
diagonality assumptions, and whose use in eqn. (1) is justified by some rigorously
provable mathematical principle. This is exactly what we propose with MaSQ,
which will be detailed in the next section.

2.5 MaSQ computation and theoretical justification

As in [13], the DNN loss function L is considered to depend on a parameter
vector θ, which, in reality, is a concatenation of all (flattened) weight matrices
W i and bias vectors bi of the DNN. Since DNN loss functions are assumed to be
differentiable almost everywhere at least once, we can apply the standard theory
of differential calculus which states that a differentiable function such as L can
be locally approximated by linear functions in all directions δ ∈ Rn, see, e.g.,
[3]:

∀δ ∈ Rn : L(θ + hδ) = L(θ) + hJ · δ +
η(hδ)

h
(7)

where we define a deviation parameter h, the gradient J , Jk = ∂L
∂θk

and a function

η(hδ) that goes to zero faster than h as h→ 0. This formula indicates that L gets
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better and better approximated by the linear function L(θ+J ·δ) as h→ 0. So,
for sufficiently small h, the rate of change of L(θ) as a reaction to small changes
in a parameter θk are given by the gradient entry Jk. Identifying the parameters
that contribute most to changes of L is then reduced to ranking the entries of J
by their absolute value. Using the squared value for ranking is possible as well,
since squaring is an operation that does not change the ranking.

Since gradients in DNN training are computed as training set (with N sam-
ples) expectation values over per-sample gradients Jnk, samples being denoted
by xn,

Jk =
1

N

∑
n

Jnk =
1

N

∑
n

(
∂L
∂θk

∣∣∣
xn

)
, (8)

the squared gradients are then obtained as

Fk ≡ J2
k =

(
1

N

∑
n

∂L
∂θk

∣∣∣
xn

)2

, (9)

The squared entries of J can thus be directly used to punish changes to cer-
tain parameters more than changes to other parameters, since a higher value
of J2

k will, by the definition of differentiable functions given in eqn. (7), depend
quadratically on the modulus of the linear rate of change Jk of L upon small
changes to the parameter θk. For this argument, it is immaterial whether the
square or the modulus of Jk is used, although squares punish deviations for
critical parameters more strongly. The squared entries J2

k thus form the Matrix
of SQuares (MaSQ). Its entries Fk can be re-written in terms of the individual
weight matrices and bias vectors as

FW
i

jk ≡
(

1

N

∑
n

∂L
∂W i

jk

∣∣∣
xn

)2

(10)

F bi

j ≡
(

1

N

∑
n

∂L
∂bij

∣∣∣
xn

)2

in order to be inserted into the EWC loss function (2). When comparing eqns.
(10) and (6), we note that MaSQ and FIM are actually computed in quite a sim-
ilar fashion, as expectation values over loss gradients. However, FIM requires to
square the gradients prior to taking the expectation value over training samples,
whereas it is the other way round for MaSQ. Since, in practice, gradients are
summed up over mini-batches and averaged after having traversed all training
samples, FIM and MaSQ are equivalent for batch sizes of B = 1.

Memory consumption of FIM and MaSQ when using TensorFlow For
B > 1 automatic differentiation frameworks like TensorFlow run into problems
because they cannot compute per-sample gradients, which is required for FIM
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computation. So current reference implementations 1 use a workaround that con-
sists of duplicating weight matrices and bias vectors B times, and then taking the
gradient w.r.t each of the copies, which gives the per-sample gradients, although
at the cost of a B-fold increase in memory consumption. MaSQ, in contrast,
performs the squaring operation after having taken the average and thus does
not require per-sample gradients to be computed.

3 Experiments

All DNN training is performed using stochastic gradient descent, and the Adam
optimization strategy in particular. Training on D1 or D2 is always performed
for 5000 iterations which, for MNIST, comes down to approximately 10 epochs.
This value is empirically chosen, longer training times do not improve results.
The code of our experiments is available on GitHub2. It is written in Python 3.6
using TensorFlow 1.12. The code is tested with GPU support, but will probably
run without GPU support as well although much more slowly.
We perform our experiments in several steps:

– Verification of incremental learning capacity of EWC/MaSQ In Sec.
3.1, we test whether EWC learning on all three SLTs works with MaSQ.
In order to make sure that results are generalizable (i.e., do not depend
on a particular choice of hyper-parameters), we perform extensive hyper-
parameter optimization w.r.t. DNN topology, and re-training learning rate.

– Consistency check In Sec. 3.2 we ensure that our EWC implementation is
correct, by performing incremental learning experiments for the DNNs that
performed best in the experiments of Sec. 3.1. This time, however, we work
with a batch size of 1 for MaSQ computation, in which case, as outlined in
Sec. 2.5, it corresponds exactly to the FIM as computed in [13].

– Numerical comparison of FIM and MaSQ In Sec. 3.4, we compare
the numerical values computed for FIM and MaSQ on the same SLT to
determine whether there are significant deviations. The reasoning for this is
as follows: If there are no significant deviations between FIM and MaSQ, it
is not surprising if there are no differences in EWC performance. However, if
there are deviations but EWC works nevertheless with MaSQ, then we can
conclude that MaSQ is a valid alternative to FIM.

– Empirical check of FIM diagonality assumption In Sec. 3.3, we check
numerically whether the diagonal assumption made in [13,15] holds, at least
approximately.

3.1 Verification of incremental learning capacity of EWC/MaSQ

For these experiments, we adhere to the full experimental paradigm outlined in
Sec. 2.3, computing the MaSQ using a batch size of 1000. While training on

1 https://github.com/stokesj/EWC
2 www.github.com/EWC
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b SLT L1 L2 L3 ε2 accuracy in % acc. in % for λ = 0
e DP10-10 800 800 200 1e-05 96.94 x
s D9-1 800 400 400 1e-04 96.93 x
t D5-5 800 800 -1 1e-05 87.81 x
l SLT L1 L2 L3 ε2 acc. in % acc. in % for λ = 0
a DP10-10 800 800 200 1e-04 96.84 89
s D9-1 800 400 400 1e-05 96.27 30
t D5-5 800 800 -1 1e-05 87.29 49

Table 1: Tabulated results of test accuracies for best DNN hyper-parameter settings,
grouped by SLT. Evaluation is conducted using the ”best” (above) or ’last” (below)
strategies, see text for details. Results for λ = 0 are not given for the ”best” strategy
since it is inappropriate in this case (the test accuracy has no peak except at the
beginning, which is meaningless). Entries of -1 for the size of layer 3 mean that this
layer is absent.

all SLTs, hyper-parameter optimization is performed by exhaustively varying
the parameters given in Sec. 2.2 within the given ranges, using classification
accuracy as a selection criterion. We distinguish two possibilities for determining
the quality of a particular training/retraining run: while always relying on the
test accuracy on the whole dataset D1 ∪D2, one may consider the best or the
last value of the re-training interval (assuming test accuracy is evaluated after
each mini-batch iteration). While it is intuitive to use the best value, using
the last value makes sense, too, since this quantity requires no extra effort to
compute and is usually more robust to variations of the re-training interval. For
completeness, the results given in Tab. 1 list both possibilities.
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Fig. 2: Incremental learning performance of best DNNs (using EWC with MaSQ) re-
sulting from hyper-parameter search EWC, applying the ”best” criterion for evaluating
an experiment. From left to right: D5-5, DP10-10, D9-1.

3.2 Consistency check

We select, for each SLT, the DNN that performed best in the hyper-parameter
selection strategy of the previous section, using the ”best” criterion. We then
evaluate these three DNNs two times: one time with EWC turned off (balancing
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Fig. 3: Incremental learning performance of best DNNs (using EWC with MaSQ) re-
sulting from hyper-parameter search EWC, applying the ”last” criterion for evaluating
an experiment. From left to right: D5-5, DP10-10, D9-1.
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Fig. 4: Incremental learning performance of a DNN with fixed parameters with EWC,
using the FIM instead of MaSQ. From left to right: D5-5, DP10-10, D9-1. To be com-
pared to Figs. 2, 3 since the same hyper-parameters are used for each type of SLT.
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Fig. 5: Incremental learning performance of a DNN with fixed parameters without the
EWC mechanism; i.e., setting λ = 0. From left to right: D5-5, DP10-10, D9-1. Strong
forgetting can be observed for all SLTs. To be compared to Figs. 2, 3 since the same
hyper-parameters are used for each type of SLT.
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parameter λ = 0), and the second time with EWC turned on (using λ = 1
ε2

)
but the batch size for MaSQ computation set to 1. In this case, the MaSQ and
the FIM are identical, so we essentially perform EWC learning using the FIM.
The results are given in Figs. 5, 4. We first observe in Fig. 5 that accuracy after
re-training drops strongly for the D5-5 and D9-1 SLTs when turning off EWC.
For DP10-10, forgetting is less strong, an effect already known from previous
studies for this SLT [18]. In contrast, using the FIM together with EWC reduces
forgetting for all SLTs and produces results that are very close to those obtained
when using the MaSQ instead of FIM, see Figs. 2, 3. This shows that EWC with
MaSQ produces similar results as EWC with FIM, so MaSQ can be considered
a drop-in replacement.

3.3 Empirical check of FIM diagonality assumption

weight/bias→ W 3 b1 b2 b3

diag. sum 170.04 0.33 0.01 0.004
off-diag. sum 2023.41 1.36 0.04 0.004
diag. mean 0.002 0.0004 1.24e-06 4e-05

off-diag. mean 2.5e-07 1.7e-06 5.8e-08 4e-07
Table 2: Comparison of diagonal and off-diagonal entries of the FIM computed for SLT
D5-5. For weight matrices W 1 and W 2, computation was too memory-consuming. We
see that the average diagonal entry is, as a rule, several orders of magnitude larger than
the off-diagonal entries. However, for the sums of diagonal and off-diagonal entries, this
picture is reversed, a problem that grows worse with increasing number of weights in
a DNN.

It is in principle rather simple to verify whether the FIM supports a diagonal
assumption by evaluating eqn.(6) numerically (separately for each weight matrix
and bias vector), although in practice memory limitations impose constraints: if
a particular weight matrix W i has dimension of, e.g., 100x100 weights, then the

associated matrix FW i
kj would have 10000x10000 entries (approximately half a

gigabyte at 32-bit floating point precision). In order to test FIM diagonality, we
therefore use a very small, fixed DNN of dimensions 784-30-30-10 and train it
on the SLT D5-5 for 5.000 iterations. Then we compute, for all weight matrices
and bias vectors, the FIM Fkl defined in eqn.(3), with the parameter vector θ
being restricted to parameters from a particular weight matrix or bias vector.

The results for this very small DNN are given, for all SLTs, in Tab. 2.
They show that, while individual diagonal entries of the full FIM are indeed
much larger than off-diagonal entries, but that the sum of off-diagonal entries
for exceeds the sum of diagonal entries. In an EWC-like mechanism including
off-diagonal elements, these off-diagonal elements would therefore outweigh the
diagonal elements, thus rendering the diagonal assumption questionable.
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3.4 Numerical comparison of FIM and MaSQ

In order to perform a numerical comparison between the FIM and the MaSQ,
we analyze both quantities for all weight matrices W i and bias vectors bi in the
DNNs, again using the hyper-parameters of the DNNs that performed best in the
hyper-parameter optimization of Sec. 3.1. The results for SLTs D5-5, D9-1 and
DP10-10 are given in Figs. 6, 7, 8, respectively. We find a pronounced difference
in maximal values of about a factor of 2, uniformly through all weight matrices,
bias vectors and SLTs. This indicates that the FIM and the MaSQ are indeed
substantially different quantities, and that the fact of EWC working with MaSQ
is not because the MaSQ is equal, or proportional, to the FIM.

Fig. 6: Numerical comparison of maximal FIM and MaSQ values, given sepa-
rately for all weight matrices (wh1:W 1,wh2:W 2,wh3:W 3,wo:W 4) and bias vectors
(bh1:b1,bh2:b2,bh3:b3,bo:b4).

4 Discussion and principal conclusions

In this investigation, we introduce the Matrix of SQuares (MaSQ) as a drop-in
replacement for the Fisher Information Matrix (FIM) in EWC-type incremen-
tal DNN learning algorithms. MaSQ is simple to compute and has a simple,
mathematically well-founded interpretation.
MaSQ is effective in preventing catastrophic forgetting By the results
of Sec. 3.1, we find that using MaSQ performs at least as good as FIM on
all considered tasks, and that both effectively prevent catastrophic forgetting
if correct parameter choices are made, which we do by an exhaustive search
procedure.
MaSQ and FIM are different Results of Sec. 3.4 indicate that the MaSQ
and the FIM are really numerically different, so similar performance cannot be
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Fig. 7: Numerical comparison of maximal FIM and MaSQ values, given separately for
all weight matrices (wh1:W 1, wh2:W 2, wh3:W 3, wo:W 4) and bias vectors (bh1:b1,
bh2:b2, bh3:b3, bo:b4).

Fig. 8: Numerical comparison of maximal FIM and MaSQ values, given separately for
all weight matrices (wh1,wh2,wh3,wo) and bias vectors (bh1,bh2,bh3,bo).
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explained by numerical similarity, but rather by the fact that the use of the
MaSQ is motivated by intuitive considerations about gradients of differentiable
functions, in this case the DNN loss function L.

The FIM diagonal assumption is problematic As we show for a simple
setting in Sec. 3.3, the assumption that the FIM is diagonal is justified at first
glance since diagonal elements are uniformly larger by at least an order of mag-
nitude than off-diagonal elements. This is not really surprising since diagonal
elements can only be positive due to the squaring, whereas off-diagonal elements
have no such constraints and show lower average value simply because of this
fact. We argue, however, that in an EWC-like mechanism using off-diagonal el-
ements as well, these will have a much stronger impact since their number is far
greater. Thus, neglecting the off-diagonal elements is not really justified when
using the FIM for incremental EWC learning.

MaSQ is efficient and mathematically well-founded This is not really a
problem when using the MaSQ, since it requires no diagonality assumption, and
its use in EWC-like algorithms can be rigorously motivated from the calculus of
derivatives. The fact that MaSQ computation is much more memory-efficient in
frameworks like TensorFlow is an interesting by-product of our investigation.

Why FIM is problematic Even when leaving aside the issue of the diagonal
assumption in FIM computation, one may ask whether there is really a big
difference between eqns.(3) and (10): computing the expectation of squares or the
square of the expectation does not really seem a noteworthy difference. However,
when considering Jensen’s inequality (which, as a particular case, states that
for any convex function f and an integrable random variable X: f(E(X)) ≤
E(f(X))), we can very easily construct cases where FIM would grossly over-
estimate the importance of a weights that is actually irrelevant. For example,
let us consider the case where a weight’s MaSQ value, i.e., E[dL/dW ])2, gives
approximately 0, reflecting that W is unimportant w.r.t to the loss function.
By Jensen’s inequality, the corresponding FIM entry, that is, E[(dL/dW )2], can
be arbitrarily large since it is the upper bound on the MaSQ value. This case
occurs when there are both positive and negative contributions to the gradient
that approximately cancel: with FIM, we would have assigned high importance
to a weight that is actually useless.

Probabilistic interpretation of MaSQ What is often confusing is that the
FIM is computed in terms of the loss function, yet is attributed a probabilistic
meaning. To resolve this, is must be recalled that, in the probabilistic view of
machine learning the loss function is defined as the log likelihood of the data
under the model: minimizing the loss corresponds to maximizing this likelihood.
From this probabilistic interpretation of the loss function, a probabilistic inter-
pretation of the FIM and its various approximations may be motivated. MaSQ,
on the other hand, relies solely on multi-variate calculus for its interpretation
and treats the loss like any other multi-variate function, making it much clearer
to see what MaSQ values actually mean: if they are high, the corresponding
model parameter is important w.r.t. the loss, which may or may not have a
probabilistic interpretation.
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5 Future Work

A straightforward corollary of this article is that all algorithms that make use of
the FIM should work just as well or better when using MaSQ. In particular, we
will test this approach for the very promising IMM[15] algorithm that strongly
relies on FIM. All things considered, MaSQ should actually show better per-
formance for EWC and its variants, so another line of investigation will consist
of analyzing and comparing MaSQ/EWC performance and comparing this to
existing work in terms of accuracy, but also speed and memory consumption.
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