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Abstract. We present a simple idea to avoid catastrophic forgetting
when training deep neural networks (DNNs) on class-incremental tasks.
This means that initial training is conducted on a sub-task described by
a dataset D1, whereas re-training is conducted subsequently, on a sub-
task described by a dataset D2 that is composed of different classes. As
our recent work suggest that DNNs perform very poorly at this problem,
we propose a simple extension that proposes an individually trained read-
out layer for each sub-task. While this is unproblematic for training, a
clustering method is used at test time to determine to which sub-task a
sample most likely belongs. Experiments on simple benchmarks derived
from MNIST show the effectiveness of this method for which a dedicated
TensorFlow implementation is made available.

1 Introduction

The context of this article is the susceptibility of deep neural networks (DNN) to
an effect usually termed ”catastrophic forgetting” or ”catastrophic interference”
[1]. When training a DNN incrementally, that is, first training it on a sub-task
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Fig. 1: Basic scheme of incremental training experiments conducted in this ar-
ticle. Initial training is conducted using a sub-task D1 for T iterations, followed
by retraining on sub-task D2 for another T iterations. Both datasets differ in
their statistical properties; in this article, we model this by using different classes
from the MNIST benchmark for D1 and D2, or a different spatial permutation
of pixels from the same classes, or both. During both training and retraining,
performance on the test sets of D1 and D2 (derived from the MNIST test data)
are conducted.



Fig. 2: Two prototypical experiments without (upper diagram) and with (lower
diagram) catastrophic forgetting. Each experiment is subdivided into two steps:
initial training on sub-task D1 (left-hand side, white background) and re-training
on sub-task D2 (right-hand side, gray background). The dark blue curve indi-
cates test performance on D1 during initial training, the red one test performance
on D1 ∪ D2 during re-training. It is the latter that indicates unambiguously
whether catastrophic forgetting happens. The green curve indicates test perfor-
mance on D2 during re-training and indicates whether D2 has been well learned
or not.

D1 and subsequently re-training on another sub-task D2 whose statistics dif-
fer (see Fig. 1 for a visual impression), catastrophic forgetting (CF) implies an
abrupt and virtually complete loss of knowledge about D1 during re-training. In
various forms, knowledge of this effect dates back to very early works on neural
networks [1], of which modern DNNs are a special case. Nevertheless, known
solutions seem difficult to apply to modern DNNs trained in a purely gradient-
based fashion. Recently, several approaches have been published with the explicit
goal of resolving the CF issue for DNNs in incremental learning tasks, namely
[2, 3, 4]. On the other hand, there are machine learning methods explicitly con-
structed to avoid catastrophic forgetting [5, 6, 7], although this ability seems to
be achieved at the cost of significantly reduced learning capacity, probably be-
cause none of these architectures is ”deep”. In this article, we verify the proposed
solutions for DNNs using a wide variety of class-incremental visual problems con-
structed from the well-known MNIST benchmark [8]. subsectionRelevance of the
catastrophic forgetting problem When DNNs are trained on a single (sub-)task
D1 only, catastrophic forgetting is not an issue. When retraining is necessary
with a new sub-task D2, one recurs often to the solution to retrain the DNN
with samples defining D1, plus the samples for D2. This heuristic works in
many situations, especially when the cardinality of D1 is moderate. When D1
becomes very large, and many slight additions D(1 +n) are required, this strat-
egy is very ineffective or outright infeasible. In addition, ’Big Data’ settings in
which streaming data are processed (like, e.g., in network intrusion detection[9])
are often subject to concept drift [10] and do not reveal whether incoming data
is from a ”new” task (with different statistics) or from D1. In this case, con-



tinuous retraining is required, and many settings require that old knowledge be
retained, at least for a defined time. If DNNs are employed in cases as outlined
here, the issue of catastrophic forgetting becomes critically important, which is
why we wish to asses, once and for all, where DNNs stand w.r.t. this issue.

Related work Recently, new approaches specific to DNNs have been unveiled[2,
3, 4], some with the explicit goal of preventing catastrophic forgetting[2, 4], while
others [3] just suggest that their methods induce a greater ”structural stability”
while carefully avoiding the term ”catastrophic forgetting”. The work presented
in [2] advocates the popular ”dropout” method as a means to reduce or elimi-
nate catastrophic forgetting, validating their claims on tasks derived a randomly
shuffled version of MNIST[8] and a Sentiment Analysis problem. In [3], a new
kind of competitive transfer function is presented which is termed LWTA (”local
winner takes all”). This article also remarks that most forgetting happens in the
readout layers of a DNN, and that maintaining separate readout layers for each
sub-task can alleviate catastrophic forgetting. This idea is generalized in this
article to the concept of multiple readout layers (MRL) in DNNs. Again, tests
are conducted on two aforementioned problems. Lastly, in a very recent article
[4] the authors advocate determining the hidden layer weights that are most
”relevant” to a DNNs performance, and punishing the change of those weights
more heavily during re-training by an additional term in the energy functional.
Experiments are conducted on random data, randomly shuffled MNIST data as
in [2, 3], and on a task derived from Deep Q-learning in Atari Games [11].

2 Methods

3 Datasets

The principal dataset this investigation is based on is MNIST[8]. Despite being
a very old benchmark, and a very simple one, it is still widely used, in particular
in recent works on incremental learning in deep networks[2, 3, 4]. It is used
here because we wish to reproduce these results, and also because we care about
performance in class-incremental settings, not offline performance on the whole
dataset. As we will see, MNIST-derived problems are more than a sufficient
challenge for the tested algorithm so it is really unnecessary to add more complex
ones.

3.0.1 Permutation: DP10-10

This is the dataset used to evaluate incremental retraining in [2, 3, 4], so results
can directly be compared to those in [2, 3, 4]. It contains two sub-problems, each
of which is obtained by permuting each 28x28 image in a random fashion that is
different between, but identical within, sub-problems. Since both sub-problems
contain 10 MNIST classes, we denote this dataset by DP10-10, the ’P’ indicating
permutation.



3.0.2 Exclusion: D5-5

This dataset contains two sub-problems that are obtained by randomly choosing
5 MNIST classes for the first sub-problem, and the remaining 5 for the sec-
ond, which leads to the identifier D5-5. For simplicity, we choose the classes as
0,1,2,3,4 and 5,6,7,8,9. To verify that results do not depend on this particular
choice of classes, we create two additional datasets where the partitioning of
classes is 0,2,4,6,8 –vs– 1,3,5,7,9 (D5-5b) and 3,4,6,8,9 –vs– 0,1,2,5,7 (D5-5c).

3.0.3 Exclusion: D9-1

We construct this dataset (containing two sub-problems) in a similar way as D5-
5, selecting MNIST classes 0–8 for the first sub-problem and the remaining class
9 for the second one. In order to make sure that no artifacts are introduced by
the arbitrary choice of the second sub-problem, we create two additional datasets
(D9-1b and D9-1c) where the second sub-problem contains MNIST class 0 and
1, respectively.

3.1 Models

We use TensorFlow/Python [?] to implement or re-create all models used in this
article. The source code for all experiments is available at www.gepperth.net/alexander/downloads/iclr18.tar.gz.
We mainly consider a ’normal’ fully-connected (FC) feed-forward MLP with two
hidden layers, a softmax (SM) readout layer trained using cross-entropy, and
the (optional) application of dropout (D) and ReLU operations after each hid-
den layer. Its structure can thus be summarized as Input-FC1-D-ReLU-FC2-D-
ReLu-FC3-SM.

4 Experiments

5 Discussion
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