
Catastrophic forgetting: still a problem for
DNNs

B. Pfülb, A. Gepperth, S. Abdullah, and A. Kilian

Fulda University of Applied Sciences, Leipzigerstr. 123, 36037 Fulda, Germany
{benedikt.pfuelb, alexander.gepperth, saad.abdullah,

andre.kilian}@cs.hs-fulda.de
https://www.hs-fulda.de

Abstract. We investigate the performance of deep neural networks when
trained on class-incremental visual problems consisting of initial training,
followed by retraining with added visual classes. Catastrophic forgetting
(CF) behavior is measured using a new evaluation procedure that aims
at an application-oriented view of incremental learning. In particular, it
imposes that model selection must be performed on the initial dataset
alone, as well as demanding that retraining control be performed only
using the retraining dataset, as initial dataset is usually too large to be
kept. Experiments are conducted on class-incremental problems derived
from MNIST, using a variety of different DNN models, some of them
recently proposed to avoid catastrophic forgetting. When comparing our
new evaluation procedure to previous approaches for assessing CF, we
find their findings are completely negated, and that none of the tested
methods can avoid CF in all experiments. This stresses the importance of
a realistic empirical measurement procedure for catastrophic forgetting,
and the need for further research in incremental learning for DNNs.

Keywords: DNN · catastrophic forgetting · incremental learning

1 Introduction

The context of this article is the susceptibility of DNN to an effect usually termed
”catastrophic forgetting” or ”catastrophic interference” [2]. When training a
DNN incrementally, that is, first training it on a sub-task D1 and subsequently
retraining on another sub-task D2 whose statistics differ (see Fig. 1), CF implies
an abrupt and virtually complete loss of knowledge about D1 during retraining.
In various forms, knowledge of this effect dates back to very early works on
neural networks [2], of which modern DNNs are a special case. Nevertheless,
known solutions seem difficult to apply to modern DNNs trained in a purely
gradient-based fashion. Recently, several approaches have been published with
the explicit goal of resolving the CF issue for DNNs in incremental learning tasks,
illustrated in [3,5,10]. On the other hand, there are ”shallow” machine learning
methods explicitly constructed to avoid CF (reviewed in, e.g., [9]), although
this ability seems to be achieved at the cost of significantly reduced learning
capacity. In this article, we test the recently proposed solutions for DNNs using

https://www.hs-fulda.de

2 B. Pfülb, A. Gepperth et al.

 sub-task D1 sub-task D2

0 tmax

iterations

train on D1

test on D1

train on D2

test on D2

test on D1

t2 max

(a) Training Scheme

0 1000 2000 3000 4000 5000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

te
st

ac
cu

ra
cy

Initial training Re-training

train:D1,test:D1
train:D2,test:D2
train:D2,test:All

(b) without CF

0 1000 2000 3000 4000 5000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

te
st

ac
cu

ra
cy

Initial training Re-training

train:D1,test:D1
train:D2,test:D2
train:D2,test:All

(c) with CF

Fig. 1: Scheme of incremental training experiments (see Fig. 1a) and representative
outcomes without and with CF (see Figs. 1b and 1c). Initial training with sub-task
D1 for tmax iterations is followed by retraining on sub-task D2 for another tmax it-
erations. During training (white background) and retraining (grey background), test
performance is measured on D1 (blue curves), D2 (green curves) and D1 ∪ D2 (red
curves). The red curves allow to determine the presence of CF by simple visual inspec-
tion: if there is significant degradation w.r.t. the blue curves, then CF has occurred.

a variety of class-incremental visual problems constructed from the well-known
MNIST benchmark [6]. In particular, we propose a new experimental protocol to
measure CF which avoids commonly made [3,5,10,7] implicit assumptions that
are incompatible with incremental learning in applied scenarios.

1.1 Application relevance of catastrophic forgetting

When DNNs are trained on a single (sub-)task D1 only, catastrophic forgetting
is not an issue. When retraining is necessary with a new sub-task D2, one of-
ten recurs to retraining the DNN with all samples from D1 and D2 together.
This heuristic works in many situations, especially when the cardinality of D1

is moderate. When D1 becomes very large, however, or many slight additions
D(1+n) are required, this strategy becomes unfeasible, and an incremental train-
ing scheme (see Fig. 1a) must be used. Thus, the issue of catastrophic forgetting
becomes critically important, which is why we wish to assess, once and for all,
where DNNs stand with respect to CF.

1.2 Approach of the article

In all experiments, we consider class-incremental learning scenarios divided into
two training steps on disjunct sub-tasks D1 and D2, as outlined in Sect. 1 and
visualized in Fig. 1. Both training steps are conducted for a fixed number of
iterations, with the understanding that in practice retraining would have to be
stopped at some point by an appropriate criterion before forgetting of D1 is
complete. The occurrence of forgetting is quantified using classification perfor-
mance on all test samples from D1 ∪D2 at the time retraining is stopped (see
Fig. 1 for a visual impression). In contrast to previous works, our experiments
take into account how (class-)incremental learning works in practice:
– D2 is not available at initial training

– D1 is not available at retraining time as it might be very large.

Catastrophic forgetting: still a problem for DNNs 3

Tab. 1: Overview over 6 DNN models used in this study. They are obtained by
combining the concept of Dropout (D) with the basic DNN models: fully-connected
(fc), convolutional (conv), LWTA and EWC.

PPPPPPPconcept
model

fc conv LWTA EWC

with Dropout D-fc D-conv 7 D-EWC (EWC)

without Dropout fc conv LWTA-fc (LWTA) 7

This training paradigm (which we term ”realistic”) has profound consequences,
most importantly that initial model selection has to be performed using D1

alone, which is in contrast to previous works on CF in DNNs [3,5,10], where
D1 ∪D2 is used for model selection purposes. Another consequence is that the
decision on when to stop retraining has to be taken based on D2 alone.
In order to reproduce earlier results, we introduce another training paradigm
which we term ”prescient”, where both D1 and D2 are known at all times, and
which aligns well with evaluation methods in recent works. As classifiers, we use
typical DNN models like fully-connected- (fc), convolutional- (conv), LWTA-
based- (fc-LWTA) and DNNs based on the EWC model (EWC). Most of these
can be combined with the concepts of Dropout (D, [4]). An overview of possible
combinations is given in Tab. 1.
For all models, hyperparameter optimization is conducted in order to ensure
that our results are not simply accidental.

1.3 Related work on CF in DNNs

In addition to early works on CF in connectionist models [2], new approaches
specific to DNNs have recently been unveiled, some with the explicit goal of pre-
venting catastrophic forgetting [3,5,10,7]. The work presented in [3] advocates
the popular Dropout method as a means to reduce or eliminate CF, validating
their claims on tasks derived a randomly shuffled version of MNIST [6] and a
Sentiment Analysis problem. In [10], a new kind of competitive transfer func-
tion is presented which is termed LWTA (Local Winner Takes All). In a very
recent article [5], the authors advocate determining the hidden layer weights
that are most ”relevant” to a DNNs performance, and punishing the change of
those weights more heavily during retraining by an additional term in the en-
ergy functional. Experiments are conducted on random data, randomly shuffled
MNIST data as in [3,10], and on a task derived from Deep Q-learning in Atari
Games [8]. Even more recently, authors in [7] propose the so-called incremental
moment matching (IMM) technique which suggests an alignment of statistical
properties of the DNN between D1 and D2 which is not included here, because
it inherently requires knowledge of D1 at re-training time to select the best
regularization parameter(s).

2 Methods

The principal dataset this investigation is based on is MNIST [6]. Despite being a
very old benchmark, and a very simple one, it is still widely used, in particular in

4 B. Pfülb, A. Gepperth et al.

recent works on incremental learning in DNNs [3,5,7,10]. It is used here because
we wish to reproduce these results, and also because we care about performance
in class-incremental settings, not offline performance on the whole dataset. As
we will see, MNIST-derived problems are more than a sufficient challenge for
the tested algorithms, so it is really unnecessary to add more complex ones (but
see Sect. 4 for a more in-depth discussion of this issue).

2.1 Learning tasks

As outlined in Sect. 1.2, incremental learning performance of a given model is
evaluated on several datasets constructed from the MNIST dataset. The model is
trained successively on two sub-tasks (D1 and D2) from the chosen dataset and
it is recorded to what extend knowledge about previous sub-tasks is retained.
The precise way the sub-tasks of all datasets are constructed from the MNIST
dataset shall be described below.
Exclusion: D5-5 These datasets are obtained by randomly choosing 5 MNIST
classes for D1, and the remaining 5 for D2. To verify that results do not depend
on a particular choice of classes, we create a total of 8 datasets where the parti-
tioning of classes is different (see Tab. 2).
Exclusion: D9-1 We construct these datasets in a similar way as D5-5, select-
ing 9 MNIST classes for D1 and the remaining class for D2. In order to make
sure that no artifacts are introduced, we create three datasets (D9-1a, D9-1b
and D9-1c) with different choices for D1 and D2, see Tab. 2.
Permutation: DP10-10 This is the dataset used to evaluate incremental re-
training in [3,5,10], so results can directly be compared. It contains two sub-tasks,
each of which is obtained by permuting each 28 x 28 image in a random fashion
that is different between, but identical within, sub-tasks. Since both sub-tasks
contain 10 MNIST classes, we denote this dataset by DP10-10, the ”P” indicat-
ing permutation, see Tab. 2.

2.2 Models

We use TensorFlow/Python to implement or re-create all models used in this
article. The source code for all experiments is available at https://gitlab.

informatik.hs-fulda.de/ML-Projects/CF_in_DNNs.

Fully connected deep network Here, we consider a ”normal” fully-connected
(FC) feed-forward MLP with two hidden layers, a softmax (SM) readout layer
trained using cross-entropy, and the (optional) application of Dropout (D) and

Tab. 2: MNIST-derived datasets (DS) used in this article. All partitions of MNIST
into D1 and D2 are non-overlapping. For the DP10-10 dataset, the classes are identical
for D1 and D2 but pixels are permuted in D2 as described in the text.
PPPPPPPpart.

DS D5-5 D9-1
DP10-10

D5-5a D5-5b D5-5c D5-5d D5-5e D5-5f D5-5g D5-h D9-1a D9-1b D9-1c

D1 classes 0-4 0 2 4 6 8 3 4 6 8 9 0 2 5 6 7 0 1 3 4 5 0 3 4 8 9 0 5 6 7 8 0 2 3 6 8 0-8 1-9 0,2-9 0-9

D2 classes 5-9 1 3 5 7 9 0 1 2 5 7 1 3 4 8 9 2 6 7 8 9 1 2 5 6 7 1 2 3 4 9 1 4 5 7 9 9 0 1 0-9

https://gitlab.informatik.hs-fulda.de/ML-Projects/CF_in_DNNs
https://gitlab.informatik.hs-fulda.de/ML-Projects/CF_in_DNNs

Catastrophic forgetting: still a problem for DNNs 5

ReLU operations after each hidden layer. Its structure can thus be summarized as
In-FC1-D-ReLU-FC2-D-ReLU-FC3-SM. In case more hidden layers are added,
their structure is analogous.
ConvNet A convolutional network inspired by [1] is used here, with two hidden
layers and the application of Dropout (D), max-pooling (MP) and ReLU after
each layer, as well as a softmax (SM) readout layer trained using cross-entropy.
It structure can thus be stated as In-C1-MP-D-ReLU-C2-MP-D-ReLU-FC3-SM.
EWC The Elastic Weight Consolidation (EWC) model has been recently pro-
posed in [5] to address the issue of CF in incremental learning tasks. We use
a TensorFlow-implementation provided by the authors that we integrate into
our own experimental setup; the corresponding code is available for download
as described. The basic network structure is analogous to that of fc models.
LWTA Deep learning with a fully-connected Locally-Winner-Takes-All (LWTA)
transfer function has been proposed in [10], where it is also suggested that deep
LWTA networks have a significant robustness when trained incrementally with
several tasks. We use a self-coded TensorFlow implementation of the model pro-
posed in [10]. Following [10], the number of LWTA blocks is always set to 2. The
basic network structure is analogous to that of fully-connected models.
Dropout Dropout, introduced in [4] and widely used in recent research on
DNNs, is a special transfer function that sets a random subset of activities in
each layer to 0 during training. It can, in principle, be applied to any DNN and
thus can be combined with all previously listed models except EWC (already
incorporated) and LWTA (unclear whether this would be sensible as LWTA is
already a kind of transfer function).

2.3 Experimental procedure

The procedure we employ for all experiments is essentially the one given in
Sect. 1.2, where all models listed in Sect. 2.2 and Tab. 1 are applied to a subset
of class-incremental learning tasks described in Sect. 2.1. For each experiment,
characterized by a pair of model and task, we conduct a search in model pa-
rameter space for the best model configuration, leading to multiple runs per
experiment, each run corresponding to a particular set of parameters for a given
model and a given task.
Each run lasts for 2tmax iterations and is structured as shown in Fig. 1, initially
training the chosen model first on sub-task D1 and subsequently on sub-task D2,
each time for tmax iterations. Classification accuracy, measured at iteration t, on
a test set B while training on a train set A, is denoted χ(A,B, t). For a thorough
evaluation, we record the quantities χ(D1, D1, t < tmax), χ(D2, D2, t ≥ tmax)
and χ(D2, D1 ∪ D2, t ≥ tmax). Finally, the best-suited parameterized model
must be chosen among all the runs of an experiment. We investigate two strate-
gies for doing this, corresponding to different levels of knowledge at training
and retraining time during a single run. As detailed in Sect. 1.2, these are the
strategies which we term ”prescient” and ”realistic”. The ”prescient” evaluation
strategy (see Alg. 1) corresponds to an a priori knowledge of sub-task D2 at
initial training time, as well as to a knowledge about D1 at retraining time.

6 B. Pfülb, A. Gepperth et al.

Both assumptions are difficult to reconcile with incremental training in applied
scenarios, as detailed in Sect. 1.2. We use this strategy here to compare our
results to previous works in the field [3,5,10]. In contrast, the ”realistic” evalu-
ation strategy (see Alg. 2) assumes no knowledge about future sub-tasks (D2)
and furthermore supposes that D1 is unavailable at retraining time due to its
size (see Sect. 1.2 for the reasoning). It is this strategy which we propose for
future investigations concerning incremental learning.

2.4 Hyperparameters and model selection

For runs from all experiments, not involving CNNs, the parameters that are var-
ied are: number of hidden layers L ∈ {2, 3}, hidden layer sizes S ∈ {200, 400, 800},
learning rate during initial training εD1

∈ {0.01, 0.001}, and learning rate du-
ring retraining εD2

∈ {0.001, 0.0001, 0.00001}. Based on the parameter set P ⊆
L×S×εD1

×εD2
, all models are evaluated, respectively are model-specific hyper-

parameters used or supplanted. For experiments using CNNs, we fix the topology
to a form known to achieve good performances on MNIST as an exhaustive op-
timization of all relevant parameters would prove too time-consuming in this
case, and vary only the εD1

and εD2
as detailed before. For EWC experiments,

the importance parameter λ of the retraining run is fixed at 1/εD2
, this choice

is nowhere to be found in [5] but is used in the provided code, which is why we
adopt it. For LWTA experiments, the number of LWTA blocks is fixed to 2 in all
experiments, corresponding to the values used in [10]. Dropout rates, if applied,
are set to 0.2 (input layer) and 0.5 (hidden layers), consistent with the choices
made in [3]. For CNNs, only a single Dropout rate of 0.5 is applied for input and
hidden layers alike. The length tmax of training / retraining period is empirically
fixed to 2500 iterations, each iteration using a batch size of 100 (batchsize). The
Momentum optimizer provided by TensorFlow is used for performing training,
with a momentum parameter µ = 0.99.

2.5 Reproduction of previous results by prescient evaluation

In this experiment, we wish to determine whether it is possible to find a param-
eterization for a given DNN model and task when there is a perfect knowledge
about and availability of the initial and future sub-tasks. Applying the models
listed in Sect. 2.2 to the tasks described in Sect. 2.1, and using the experimen-
tal procedure detailed in Sect. 2.3, we obtain the results summarized in Tab. 3
(applying the ”prescient” evaluation of Alg. 1). We can state the following in-
sights: first of all, we can reproduce the basic results from [3] using the fc model
on DP10-10, which avoids catastrophic forgetting (contrarily to the conclusions
drawn in this paper: these authors consider the very modest decrease in per-
formance to be catastrophic forgetting). This is however very specific to this
particular task, and in fact all models except EWC exhibit blatant catastrophic
forgetting behavior particularly on the D5-5 type tasks, while performing ad-
equately if not perfectly on the D9-1 tasks. EWC performs well on these tasks
as well, so we can state that EWC is the only tested algorithm that avoids CF

Catastrophic forgetting: still a problem for DNNs 7

for all tasks when using prescient evaluation. Another observation is that the use
of Dropout, as suggested in [3], does not seem to significantly improve matters.
The LWTA method performs a little better than fc, D-fc, conv and D-conv but
is surpassed by EWC by a very large margin.

2.6 Realistic evaluation

This experiment imposes the much more restrictive/realistic evaluation, detailed
in Sect. 2.3 and Alg. 2, essentially performing initial training and model selection
only on D1 and retraining only using D2. It is this or related schemes that would
have to be used in typical application scenarios, and thus represents the principal
subject of this article. The performances of all tested DNN models on all of the
tasks from Sect. 2.1 are summarized in Tab. 4. Plots of experimental results over
time for the D-fc and EWC models are given in Figs. 2 to 5. The results show a
rather bleak picture where only the EWC model achieves significant success for
the D9-1 type tasks while failing for the D5-5 tasks. All other models do not even
achieve this partial success and exhibit strong CF for all tasks. We can therefore
observe that a different choice of evaluation procedure strongly impacts results
and the conclusions which are drawn concerning CF in DNNs. For the realistic
evaluation condition, which in our view is much more relevant than the prescient
one used in nearly all of the related work on the subject, CF occurs for all DNN
models we tested, and partly even for the EWC model. As to the question why
EWC performs well for all of the D9-1 type task in contrast to the D5-5 type
tasks, one might speculate that the addition of five new classes, as opposed to
one, might exceed EWC’s capabilities of protecting the weights most relevant
to D1. Various different values of the constant λ governing the contribution of
Fisher information in EWC were tested but with very similar results.

3 Discussion of results and principal conclusions

From our experiments, we draw the following principal conclusions:

– CF should be investigated using the appropriate evaluation paradigms that
reflect application conditions. At the very least, using future data for model se-
lection is inappropriate, which leads to conclusions that are radically different
from most related experimental work, see Sect. 1.3.

Data: model m, sub-tasks D1 &D2, parameter set P
Result: quality of best model q∗mp

initialize q∗mp
← −1

foreach parameters p ∈ P do
initial training of mp on D1 for tmax iterations
for t← 0 to tmax iterations do // retraining of mp on D2

update mp on D2 using batchsize; qmp,t ← χ(D2, D1 ∪D2, t)
if qmp,t > q∗mp

then q∗mp
← qmp,t

return q∗mp

Alg. 1: The prescient evaluation strategy.

8 B. Pfülb, A. Gepperth et al.

Tab. 3: Results for prescient evaluation. Please note that the performance level of
complete catastrophic forgetting (i.e., chance-level classification after retraining with
D2) depends on the dataset considered: for the D5-5 dataset it is at 0.5, whereas it is
at 0.1 for the D9-1 datasets. The rightmost column indicates the DP10-10 task which
is solved near-perfectly by all models.
XXXXXXXXXmodel

dataset D5-5 D9-1
DP10-10

D5-5a D5-5b D5-5c D5-5d D5-5e D5-5f D5-5g D5-5h D9-1a D9-1b D9-1c

EWC 0.92 0.92 0.91 0.93 0.94 0.94 0.89 0.93 1.00 1.00 1.00 1.00

fc 0.69 0.63 0.58 0.65 0.61 0.58 0.61 0.69 0.87 0.87 0.86 0.97

D-fc 0.58 0.60 0.61 0.66 0.61 0.54 0.63 0.64 0.87 0.87 0.85 0.96

conv 0.51 0.50 0.50 0.50 0.50 0.50 0.51 0.49 0.89 0.89 0.87 0.95

D-conv 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.81 0.84 0.87 0.96

LWTA 0.66 0.68 0.64 0.73 0.71 0.62 0.68 0.71 0.88 0.91 0.91 0.97

Data: model m, sub-tasks D1 &D2, parameter set P
Result: quality of best model q∗mp

initialize q∗T ← −1
forall the parameters p ∈ P do //determine best model parameter training
D1

for t← 0 to tmax iterations do
update of mp on D1 using batchsize; qmp,t ← χ(D1, D1, t)
if qmp,t > q∗T then q∗T ← qmp,t; m

∗
p ← mp

initialize q∗mp
← −1

forall the retraining learning rates ε ∈ εD2 do
initialize q∗R ← −1
for t← 0 to tmax iterations do //retraining of m∗

p on D2

update m∗
p on D2 with learning rate ε; qmp,t ← χ(D2, D2, t)

if qmp,t > q∗R then q∗R ← qmp,t

tE ← arg mint(qmp,t > 0.99 · q∗R); qmp ← χ(D2, D1 ∪D2, tE) if qmp > q∗mp

then q∗mp
← qmp

return q∗mp

Alg. 2: The realistic evaluation strategy.

– using a realistic evaluation paradigm, we find that CF is still very much a
problem for all investigated methods.

– in particular: Dropout is not effective against CF; neither is LWTA.

– the permuted MNIST task can be solved by almost any DNN model in almost
any topology. So all conclusions drawn from using this task should be revisited.

Tab. 4: Results for realistic evaluation. Please note that the performance level of
total catastrophic forgetting (i.e., chance-level classification after retraining with D2)
depends on the dataset: for the D5-5 dataset it is at 0.5, whereas it is at 0.1 for the
D9-1 datasets. The rightmost column indicates the DP10-10 task (”permuted MNIST”)
which is again solved near-perfectly by all models.
XXXXXXXXXmodel

dataset D5-5 D9-1
DP10-10

D5-5a D5-5b D5-5c D5-5d D5-5e D5-5f D5-5g D5-5h D9-1a D9-1b D9-1c

EWC 0.48 0.56 0.62 0.52 0.58 0.58 0.55 0.53 0.82 0.91 0.97 0.99

fc 0.47 0.49 0.50 0.50 0.48 0.49 0.50 0.49 0.15 0.10 0.23 0.97

D-fc 0.47 0.50 0.50 0.50 0.49 0.49 0.50 0.49 0.52 0.10 0.16 0.96

conv 0.48 0.50 0.50 0.50 0.49 0.50 0.51 0.49 0.29 0.33 0.11 0.95

D-conv 0.48 0.50 0.50 0.50 0.45 0.50 0.50 0.49 0.24 0.22 0.14 0.96

LWTA 0.47 0.50 0.50 0.50 0.49 0.49 0.51 0.49 0.48 0.29 0.66 0.97

Catastrophic forgetting: still a problem for DNNs 9

Task: D9-1a Task: D9-1c
Fig. 2: Best EWC runs on D9-1 datasets in the realistic evaluation condition.

Task: D5-5a Task: D5-5h
Fig. 3: Best EWC runs on D5-5 datasets in the realistic evaluation condition.

Task: D9-1b Task: D9-1c
Fig. 4: Best D-fc runs on D9-1 datasets in the realistic evaluation condition.

Task: D5-5a Task: D5-5c
Fig. 5: Best D-fc runs on D5-5 datasets in the realistic evaluation condition.

– EWC seems to be partly effective but fails for all of the D5-5 tasks, indicating
that it is not the last word in this matter.

We write that EWC ”seems to be partly effective”, meaning it solves some
incremental tasks well while it fails for others. So we observe that there is no
guarantee that can be obtained from a purely empirical validation approach such
as ours; yet another type of incremental learning task might be solved perfectly
or not at all. This points to the principal conceptual problem that we see when
investigating CF in DNNs: there is no theory that might offer any guarantees.
Such guarantees could be very useful in practice, the most interesting one being
how to determine a lower bound on performance loss on D1 ∪D2, without having

10 B. Pfülb, A. Gepperth et al.

access to D1, only to the network state and D2. Other guarantees could provide
upper bounds on retraining time before performance on D1 ∪ D2 degrades.

4 Future work

The issue of CF is a complex one, and correspondingly our article and our
experimental procedures are complex as well. There are several points where we
made rather arbitrary choices, e.g., when choosing the constant µ = 0.99 in the
realistic evaluation Alg. 2. The results are affected by this choice although we
verified that the trend is unchanged. Another weak point is our model selection
procedure: a much larger combinatorial set of model hyper-parameters should be
sampled, including Dropout rates, convolution filter kernels, number and size of
layers. This might conceivably allow to identify model hyperparameters avoiding
CF for some or all tested models, although we consider this unlikely. Lastly, the
use of MNIST might be criticized as being too simple: this is correct, and we
are currently doing experiments with more complex classification tasks (e.g.,
SVHN and CIFAR-10). However, as our conclusion is that none of the currently
proposed DNN models can avoid CF, this is not very likely to change when using
an even more challenging classification task (rather the reverse, in fact).

References

1. Ciresan, D.C., Meier, U., Masci, J., Maria Gambardella, L., Schmidhuber, J.: Flex-
ible, high performance convolutional neural networks for image classification. In:
IJCAI Proceedings-International Joint Conference on Artificial Intelligence. vol. 22,
p. 1237. Barcelona, Spain (2011)

2. French, R.: Catastrophic forgetting in connectionist networks. Trends in Cognitive
Sciences (4) (1999)

3. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv
preprint arXiv:1312.6211 (2013)

4. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

5. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy
of Sciences p. 201611835 (2017)

6. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Intelligent Signal Processing. IEEE Press (2001)

7. Lee, S.W., Kim, J.H., Jun, J., Ha, J.W., Zhang, B.T.: Overcoming catastrophic
forgetting by incremental moment matching. In: Advances in Neural Information
Processing Systems. pp. 4655–4665 (2017)

8. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature (7540), 529–533 (2015)

Catastrophic forgetting: still a problem for DNNs 11

9. Sigaud, O., Salaün, C., Padois, V.: On-line regression algorithms for learning me-
chanical models of robots: a survey. Robotics and Autonomous Systems 59(12),
1115–1129 (2011)

10. Srivastava, R.K., Masci, J., Kazerounian, S., Gomez, F., Schmidhuber, J.: Compete
to compute. In: Advances in neural information processing systems (2013)

	Catastrophic forgetting: still a problem for DNNs

