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Abstract—We present a SOM model based on a continuous
energy function derived from the original energy-based model
developed in [9]. Due to the convolution that is contained in the
energy function, this model can only be applied when periodic
boundary conditions are imposed (toroidal SOM), leading to
markedly higher quantization errors, especially for small map
sizes. We introduce a simple strategy, based on the assumption
of homogeneous long-term averages for input-prototype distances,
that allows to operate the energy-based SOM model without
periodic boundary conditions, and demonstrate that its quan-
tization errors are consistently lower especially for small map
sizes. Simple experiments are conducted showing the worth of
a continuous energy function, namely for novelty detection and
automatic control of SOM parameters.

I. INTRODUCTION

This article is in the context of self-organized map (SOM)
models that have a continuous energy function. The lack of
such an energy function for the original SOM model [11]
has been the subject of a multitude of articles [4], [14], and
several proposals were made to remedy this problem. The
advantages of models whose learning rule is derived from
the minimization of an energy function are numerous, while
the only disadvantages are that the existence of an energy
function imposes strong constraints on the used learning rules.
In particular, it was shown that the original SOM learning
rule cannot be derived from a continuous energy function[9].
In general, one may cite the following advantages of energy-
based SOM models:

e Estimation of learning success and parameter se-
lection A big issue for SOMs is to know whether
the model has converged to a “desirable” state. For
problems that do not allow a visual quality inspection
of the learned prototypes (such as can be performed
for the MNIST benchmark), there is no universal
criterion to determine optimal values for the model
parameters (final neighbourhood radius, final learning
rate, topology etc.), whereas an energy function pro-
vides a scalar value that can be compared.

e Proof of stability If a continuous energy function
exists and is bounded from below, this automatically
guarantees the eventual convergence of SOM learning.

e  Use of advanced stochastic gradient descent meth-
ods With a continuous energy function, many widely-
used methods for performing stochastic gradient de-
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Fig. 1.  Representative samples from the real-world pedestrian detection
dataset used in this study. Incoming samples have to be classified into one of
two classes “pedestrian” and “background”.

scent (SGD) in the domain of deep learning can be
transferred to SOM learning. This is because methods
such as RMSProp, Adam, AdaGrad, AdaDelta or
“normal” SGD [6], which try to find “good” minima
of an energy function, implicitly assume that such a
quantity exists when adapting the meta-parameters of
learning.

e  Qutlier detection When the energy (that is supposed
to be minimized by the learning process) suddenly
increases, this is a strong indication for a change in
data statistics and thus be used for outlier detection
or just to detect drift in the data. This latter property
is especially relevant for our own ongoing work on
incremental learning methods[5]. On the contrary, if
there is no energy function, it is not even very clear
what quantity can be used for outlier detection, as
there is no function that is minimized by learning.

A. Related work on energy-based SOM models

There has been a huge amount of primarily mathematical
literature about It was shown conclusively in [4] that the
original Kohonen learning rule cannot be exactly derived from
the minimization of any error function. In the same article, it is
mentioned that the Kohonen learning rule follows instead from
the individual minimization of per-neuron energy functions
[14], but these functions are very complex, non-unique and



do not lend themselves to a simple interpretation (e.g., mini-
mization of a distortion measure or similar). Another approach
was proposed by Kohonen[11] and taken further by Heskes[9]:
instead of finding error functions whose minimization would
lead to the Kohonen learning rule, these authors attempted to
very slightly modify the Kohonen rule such that an energy
function could be found. Obviously, the modification should
in no way impair the self-organization capabilities of the
model while allowing an intuitive interpretation through a
(preferably simple) energy function. An modification satisfying
these requirements was proposed in [9], [8], offering a contin-
uous energy function for discrete as well as continuous data
distributions. While this was an important theoretical result,
curiously enough there was no real follow-up in terms of
applications in data visualization and/or clustering, which is
surprising given the advantages an energy function can offer
for SOM training, see above. It may be supposed that this lack
of interest was due to the added computational complexity (an
additional convolution needs to be calculated), as well as the
problems that convolutions encounter at boundaries. Similar
SOM variants having an energy function were proposed in [7]
but they suffer from the same “convolution problem”.

II. METHODS AND DATA

In all experiments, we use the energy-based SOM model
as proposed by Heskes[9]. It is identical to the original SOM
model except for the determination of the best-matching unit
during a learning step, which involves a convolution of input-
prototype distances. By virtue of this slight modification, it can
be shown very easily that the model has a continuous energy
function that is bounded from below.

A. Energy-based SOM model

In more precise terms, we consider quadratic two-
dimensional maps M of n X n units, identified either by a linear
index 4 or a coordinate tuple (¢, j). Unless otherwise stated, we
will use the linear index. Each unit with index ¢ is associated
with a prototype vector p;. The map receives, at each time step
t, an input Z(¢) and transforms it into input-prototype distances
D = {d;(t)} by taking the euclidean distance (dropping the
dependency of all quantities on ¢ for clarity):

di = ||pi — |

As usual for SOMs, we define local neighbourhoods by a

Gaussian neighbourhood function (i, o, &) = exp(— ($20’$)2)
with a center /i and a time-dependent variance o (t). However
contrary to usual SOM practice, we express v in a n X n
neighbourhood filter G = {g;;} at each time step and use it
in the determination of the best-matching unit (BMU). G is
explicitly two-dimensional, centered on the map center and has

entries given by

Y
A=(53)
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In contrast to the original SOM model, the 2D indices (i*, j*)
of the best-matching unit (BMU) for the energy-based Heskes

model are determined by taking the 2D convolution

Q5 = (D * G)z] =

n
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again using two-dimensional indices and defining the activity
map A = {a;;}.

The weight update rule is identical to the original SOM
rule:
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where the quantities o(¢) and €(t) have the following time
dependence:
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T is calculated such that o(T1) = 0oo.

where k =

The energy function minimized by this modified SOM
model ("Heskes model”) is

E = min; a; 4)

using the definitions of eqn.(1) as demonstrated in [9]. It can
be easily seen that this amounts to the original SOM rule for
small values of o(t) as in this case the neighbourhood filter
becomes a delta filter and thus the convolution has no effect.

The convolution in eqn.(1) can depass the boundaries of the
distance map D, meaning that the indices in the sum can be
come larger than n or smaller than 0. This problem has been
long known in the computer vision literature when dealing with
image convolutions [10], and is usually addressed by imposing
particular boundary conditions. Traditional possibilities are
zero-padding where all elements that do not fall into the
image are treated as zero, or periodic boundary conditions
where the image is considered a torus in both dimensions, and
thus elements outside the image are taken from the opposite
side of the image. Whatever boundary conditions are imposed,
although they make convolution formally possible, they corrupt
the integrity of the convolved image at its borders because they
infer values for the original image that do not exist. Either,
for zero-padding boundary conditions, convolution results are
weak because of many adjacent zero values produced by the
boundary conditions, or convolution results are uncorrelated
with their neighbourhood as the opposite of the map influences
the results. In this article, we propose a simple solution to
this problem in the context of zero-padding conditions: we
statically re-weigh convolution results near the map borders
according to the part of the neighbourhood filter that falls
outside the map. Without the re-weighting, activities would
fall off towards the map borders because larger and larger parts
of the neighbourhood filter are missing (or rather: applied to
zeroes outside the image, thus not giving a contribution). As
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Fig. 2. Visualization of the inverted re-weighting map x;jl for a 10x10
map and a neighbourhood radius of o = 2. It can be ob served that at the
center of the map the values are equal to 1.0 corresponding to the fact that
no correction for boundary effects is necessary there. In the corners, where
the convolution filter has the lowest overlap with the distance map, correction
factors grow strongly to compensate.

a consequence, units at the map border would effectively have
no chance to ever become BMUs and thus the representational
capabilities of the SOM would be impaired. The re-weighting
is a multiplicative unit-wise operation:

Xij = (L *zp G)ij
Qjj — ij (5)
Xij

where we use the symbol 1 to denote a m x n map entirely
composed of ones, which is convolved with the neighbour-
hood filter using zero-padding boundary conditions. The re-
weighting map x measures, at each point (4, 7), which fraction
of the mass of the applied neighbourhood filter lies within the
map, see Fig. 2. Inserted into the definition of the activity map
A in eqn.(1) and considering the energy function of eqn.(4),
one perceives that the introduction of the re-weighting map
does not depend on the model parameters (i.e., the prototypes
p;) and thus does not affect the learning rule other than by
a position-dependent constant factor. We will refer to this
strategy of treating boundary conditions as “’zero-padding with
correction” (ZPC).

An alternative solution is to impose periodic boundary
conditions for the convolution in eqn.(1). This solution is
less complex and probably slightly faster. However, periodic
boundary conditions for the neighbourhood filter imply the
same type of boundary conditions for the neighbourhood
function, which would amount to training a toroidal SOM. It is
the purpose of this article to show that the Heskes model can
indeed work for both types of boundary conditions, and that the
proposed ZPC boundary conditions achieve significantly lower
quantization errors (leaving all other parameters unchanged).
This should be especially true for small map sizes, in which
we are particularly interested as motivated previously.

B. Data

Two datasets are used in the experiments presented in this
article. On the one hand, we rely on the well-known MNIST
benchmark [12] for handwritten digit recognition that is a
standard problem in machine learning. For our purposes, it is
ideal for testing our implementations as it allows a visual in-
spection of the learned prototypes, facilitating the detection of
implementation errors through obviously corrupted prototypes.
However, in order to lend weight to our simulation results, we
chose not to exclusively use a relatively clean, artificial dataset
such as MNIST to validate our findings, but additionally a
dataset coming from a real-world detection problem', the the
Daimler Pedestrian Detection Benchmark[3]. This dataset is
about pedestrian detection, i.e., the distinction of pedestrian
images from background/non-pedestrian samples. Please see
Fig. 1 for a visualization of the pedestrian-detection task.

Pedestrian detection is a difficult real-world problems
which requires sophisticated preprocessing in order to be
solved to any degree of precision. The preprocessing method
applied to the image data is termed HOG (histogram of
oriented gradients, see [2]) and represents a standard method in
real-world visual object recognition. Using the terms of [2], the
parameters of the HOG transform applied to cropped images
downsampled to a size of 32 x 64 are: block size 16 x 16,
cell size 8 x 8, 2 x 2 cells per block, 9 orientations bins and
normalization enabled.

The MNIST dataset contains 60.000 training samples in
10 classes that are approximately equiprobable, as well as
10.000 samples in the test set. The pedestrian detection
dataset contains 10.000 training samples and 19.148 test
samples of dimension 756 (which arises from the particular
parameters chosen for the HOG transform). It contains two
classes, “pedestrian” and “background” which are very nearly
equiprobable in both training and test sets. A visualization of
the problem can be found in Fig. 1.

III. EXPERIMENTS
A. Boundary conditions and quantization error

This simple experiment investigates the effects of different
boundary conditions when training energy-based SOM models
described in Sec. II-A. In particular, we compare the “zero-
padding with correction” (ZPC) strategy of Sec. II-A with
periodic boundary conditions (essentially a toroidal SOM).
periodic boundary conditions impose more constraints on pro-
totypes as they are imposed at all the boundaries of the SOM.
In contrast, ZPC boundary conditions impose no constraints
on prototypes close to the borders, leaving more freedom to
model the data faithfully. The basic quantity we consider here
is the so-called quantization error measure, which for a sample
Z and a set of prototypes {p;} is defined as ¢(Z,{p;}) =
min; ||Z — p;||, and which measures the capacity of a SOM to
approximate its input.

The basic question we ask is: does the manner of treating
boundary conditions show up in the quantization error of an
energy-based SOM (see II-A). To investigate this, we train
such a SOM, with both kinds of boundary conditions, for
T = 40.000 iterations on the training set of the MNIST

! Available under www.gepperth.net/alexander/downloads/dataWSOM tar.gz
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Fig. 4. Energy-SOM based outlier detection in the pedestrian detection task
for various map sizes. Shown is the percentage of rejected pedestrians plotted
against the percentage of rejected background samples. The energy-based
outlier detection works rather well: for a map size of 50x50, for example,
one may suppress 100% of background samples while only suppressing 30%
of pedestrian samples.

problem described in Sec. II-B and measure its quantization
error on the test set. Map size is varied in the interval
n = {5,7,10,15} in order to asses the influence of the map
size. The other parameters, in the terms of Sec. II-A are:
To = 10000, T3 = 30000, og = n/4, 0o = 1.5 (except
for the case n = 5 where oo, = 1.0), ¢g = 0.1, €5 = 0.01.
We compare quantization errors on the MNIST test set over
time for both boundary condition types, results are given in
Fig. 3. As can be seen, the proposed ZPC boundary conditions
work and generate SOMs with consistently lower quantization
errors than periodic boundary conditions can reach, especially
for small map sizes.

B. Energy-based rejection strategies

It is well known that SOM prototypes approximate the
distribution of input vectors[1], and that thus the distance
between an input vector and the prototype of the BMU can be
used as a measure of a priori probability for this input vector. In
other words, inputs the SOM has rarely or never seen will have
a high distance d;« to the BMU prototype (with linear index ¢*)
and can thus be potentially identified. In this experiment, we
wish to determine whether the same holds for the analogous

quantity of energy-based SOM models, the BMU activity a;«
(see Sec. 1I-A).

Concretely, we train several energy-based SOMs (with
ZPC boundary conditions) of different map sizes n only on
the pedestrian” class of the pedestrian detection problem
described in Sec. II-B and treat the “background” class as
outliers of the pedestrian class that should be detected by
imposing a threshold 6 on the quantity a;«:

class= {

Training and test parameters are: n = {10, 15,20, 30,50},
T = 70.000, Ty = 20000, 77 = 40000, 0g = n/4, 05 = 0.05,
€0 = 0.1, e5o = 0.004. As for this experiment a thorough con-
vergence is necessary, more time was given to the energy-based
SOM to converge, and a small asymptotic neighbourhood
radius was used as this favored outlier detection. By logging
the responses to test samples of a trained SOM, and by varying
the threshold 6p, one can obtain rejection curves as shown
in Fig. 4, each point of which represents a different trade-
off between retaining pedestrian and supressing background
samples.

if a;« < 0
else

pedestrian
background

It can be seen from Fig. 4 that the rejection strategy based
on the activity map works, and increasingly well so with larger
map sizes. The interesting point here is that the basic quantity
a;= = min; a; used for rejection here is nothing else but the
instantaneous energy of the SOM given the current sample,
please compare to eqn. (4). This means that, by optimizing
the energy, one directly optimizes the quantity necessary for
outlier detection, which is an elegant and intuitive approach.

C. Energy-based control strategies

As stated in the introduction, the behavior of the energy
function can give valuable hints about controlling the time-
dependent parameters o (t) and €(t) in the SOM update rule 2.
As any change in o(t) directly impacts, through the activity
map a;x, the energy function defined in (4), changes to o
should be adiabatic, i.e., small and effected only when the
energy is stationary. This is the key point of the admittedly
simplistic control strategy we adopt here, just to show what
an energy function can do for SOM users: the detection of
stationary energy states. This is effected by first exponentially
smoothing the instantaneous energy values and subsequently
computing a measure of how much the smoothed energy
changed in a characteristic time interval defined by the constant
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Fig. 5. Development of energy and neighbourhood radius over time using an automated control strategy for €(¢) and o (t) of the energy-based SOM. Experiments
differ only in the value of the threshold 8 that determines the upper limit on energy evolution that is allowed to consider the energy stationary. As expected,
all values achieve an optimization of the energy function, but more restrictive values of 6 result in slower convergence of SOM parameters, and in a slower
decrease of the energy function. It may be noted that the evolution of o is reminiscent of the exponential decay usually modeled when training SOMs, only

here it arises automatically from the specified control law.

E,(0)=0
E,t)=(1—-a Y YE,(t—1)+a 'E(t)
. E.@
D(t)=1 Bl —a) (0)

and subsequently imposing a threshold on D(t) to implement
the following control strategy:

o(t) = { max (o(t — 1)€,000)

o(t—1)

as well as an identical control strategy for €(t). Here, the pa-
rameters 6p € [0, 1] which determines how strict the definition
of stationarity should be, and ¢ € [0, 1] which determines the
decrease rate for € and o need to be specified. The time scale
parameter « controls both the speed of exponential smoothing,
as well as the time lag that is consider for the determination of
stationarity. For the experiments of this section, we consider
again the MNIST benchmark and train an energy-based SOM
(with ZPC boundary conditions) using the control rule of
eqn. (7), with fixed values of £ = 0.95, = 1000 and variable
values of p = {0.005,0.0075,0.01,0.025}. The other SOM
parameters are n = 10, 7' = 40.000, T, = 10000, 77 = 30000,
o0 =n/4, 0o =1, g = 0.1, €0o = 0.01.

if0< D <0p
else

)

The control strategies differ thus only in the strictness of
the definition of stationarity, and will therefore differ in their
eagerness to trigger the next decrease step to € and o. As can,
be seen in Fig. 5, all of these strategies are effective in reducing
energy over time, although at different convergence speeds.

IV. DISCUSSION

We presented an extension of the energy-based SOM model
proposed in [9], characterized by the avoidance of periodic
boundary conditions in the convolution operations associated
with the model. We have shown that energy-based SOMs with
ZPC boundary conditions achieve lower quantization errors
than energy-based SOMs with periodic boundary conditions,

especially for small map sizes (see Sec. III-A). We have fur-
thermore shown that energy-based SOMs with ZPC boundary
conditions can use the instantaneous energy value E(t) as a
criterion for rejecting outliers in a real-world visual pedestrian
detection problem, and that the evolution of energy over time
can be used for implementing automated control strategies for
the time-dependent SOM parameters o and € that can remove
the need to tune these time dependencies. Overall, we can
state that ZPC boundary conditions make energy-based SOMs
a tool that can be used as routinely as normal SOMS, without
the need to resort to exotic and often undesirable periodic
boundary condition that in any case reduce the approximation
capacity of a SOM (not just an energy-based one).

A. Why ZPC works

The ZPC technique we introduced here is based on a
simple static re-weighting of convolution results that form the
activity map a;;, see Sec. II-A. The reason why this approach
works for SOMs (but not, in general, for arbitrary images)
lies in the fact that we assume the temporal averages of all
input-prototype distances d; to be approximately homogeneous
throughout the map. This is not the case for images, and thus
the technique described here cannot be generalized to image
processing. If our assumption holds true, then the temporal
average activity a;; of any SOM unit (after convolution) is
indeed only dependent on the mass of the neighbourhood filter
that falls inside the map, which is a quantity that depends only
on that unit’s position and on nothing else. The correction
that fixes all map activities to homogeneous long-term values,
here termed the re-weighting map x can therefore, for fixed o,
even be precomputed, but needs to be re-calculated each time
sigma changes. Obviously the assumption we make here is not
rigorously provable from the energy function alone but would
need to be ensured by an additional energy term governing
long-term temporal averages. This would amount to computing
long-term temporal averages for all SOM units by exponential
smoothing and then using these measured averages for re-
weighting purposes, thus constituting a generalization of the
work presented here. As it is, the approach works extremely
well for the presented datasets and a great number of other



problems.

V. CONCLUSION AND FUTURE WORK

As stated in the previous section, it would be a safer
approach for ZPC boundary conditions if the assumption
of homogeneous temporal averages within the SOM were
explicitly enforced by an additional energy term. Effectively,
this would represent a kind of self-adaptation of the energy-
based SOM to input statistics and could thus generalize the
rather ad-hoc mechanisms of conscience and habituation[13]
while putting them on the solid footing of gradient-based op-
timization procedure minimizing a composite energy function.
More elaborate control strategies for time-dependent SOM
parameters could very probably be devised (for example, there
is a clear dependency between fp and « in Sec. III-C that
can be used to eliminate one parameter) so as to render these
strategies fully automatic, removing the need for any parameter
tuning during SOM training.
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