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ision 
on�den
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hies, this inevitably leads to�nal de
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Fig. 1 Motivation and basi
 setting for the presented work. Left: Per
eptual de
ision hier-ar
hy making use of response laten
y for optimal de
ision making. We imagine a hierar
hi
al
orti
al network analyzing a small image pat
h (red re
tangle) and analyzing it along two(or several) visual modalities as it has been demonstrated in lower visual areas of mammals.The (�xed) feed-forward 
onne
tions between layers (A,B) 
ause feature sele
tivity in layer1/2 neurons (indi
ated by small symbols for some neurons) whereas the (�xed) lateral 
on-ne
tions (C) 
ontain the data model for inputs to layers 1/2. Violations of this data model,e.g., by strong 
o-a
tivation of unimodal layer 1 neurons, will amplify unimodal responselaten
y, thus redu
ing in�uen
e on the multimodal integration layer 2. Right: a
tual neu-ral hierar
hy 
onsidered in this arti
le. Layers (implemented by dynami
 neural �elds) andvisual modalities 
orrespond to the left diagram but stimulus stru
ture has been simpli�edto admit only two possible stimulus types in ea
h modality. For simpli
ity, these will oftenbe termed the "left" and "right" stimulus. During experiments, one modality will alwaysre
eive the same layer 0 inputs, whereas the other modality will re
eive inputs leading tovariable de
ision 
on�den
e, and the resulting de
isions in layers 1 and 2 will be observed.1 Introdu
tionThe issue of 
onstru
ting deep neural hierar
hies has re
ently re
eived 
on-siderable interest, sparked mainly by resear
h in deep belief networks (DBNs,[17,2℄) and 
onvolutional hierar
hies[22℄. These approa
hes are su

essful inseveral appli
ation s
enarios but do not make use of the fa
t that ea
h layerin biologi
al pro
essing hierar
hies has strong lateral 
onne
tions, leading to
omplex non-linear dynami
s within a single layer. Therefore, one may spe
-ulate that the 
omputational potential of pro
essing hierar
hies 
onstru
tedfrom re
urrent neural layers might be even higher than that of present-dayDBNs. Building su
h re
urrent hierar
hies is however tri
ky due to the inher-ent non-linear behavior of re
urrent layers, and a way needs to be found tomake the nonlinear dynami
s work 'for us' instead of 'against us'.In order to illustrate the basi
 issues when 
onstru
ting deep hierar
hiesusing re
urrent neural layers, we will use per
eptual de
ision making as anexample, 
onsidering a de
ision-making task depi
ted in Fig. 1. It exhibits atwo-level hierar
hy where the high-level de
ision integrates two lower-level de-
isions about the interpretation of 
omplementary sensory input �ows. Su
hinterpretations are always based on an impli
it model of the "true" natureof inputs whi
h we denote a data model. Su
h data models are highly impor-tant for real-world pro
essing as inputs may be be 
orrupted by (stru
turedand 
omplex) noise. Using data models, however, the most likely interpreta-tion given the data model 
an be 
omputed before transmission to subsequenthierar
hy levels, thus removing noise and in
reasing signal quality. Su
h in-



Pro
essing and transmission of 
on�den
e in re
urrent neural hierar
hies 3terpretations amount to de
ision making about whi
h parts of a stimulus, ifany, to dis
ard and whi
h ones to keep. Consequently, ea
h per
eptual de
i-sion 
an be attributed a 
on�den
e value depending on the data model. Forstimuli whi
h have a 
ommon 
ause in the external world, as in the example ofFig. 1, only a single of the feature-sele
tive pat
hes 
an be a
tive at the sametime, that is to say: the data model must assign a lower 
on�den
e to inputswith, e.g., ambiguity or 
on�i
t. As inputs to the lower hierar
hy levels may
ause di�erent degrees of de
ision 
on�den
e, it is imperative to take these
on�den
es into a

ount if the high level is to take Bayes-optimal de
isions!However, as re
urrent attra
tor networks usually 
onverge to an attra
torstate representing only the strongest input, no information about the 
on-�den
e of lower-level de
isions remains in the 
onverged network states. Toremedy this, we investigate a possibility of in
luding 
on�den
e informationin neural responses, in su
h a way that 
on�den
e 
an easily be en
oded, andequally easily be de
oded by subsequent layers. As it turns out, it is the non-linear dynami
s themselves that 
an, when parametrized 
orre
tly, naturallyimplement su
h a me
hanism. Due to the nonlinear build-up of membranepotential in model neurons, as well as due to 
ompetitive intera
tions, input
on�den
e a

ording to Fig. 2 
an be translated into response laten
y, i.e.,the time from stimulus onset to the development of signi�
ant a
tivity. Vi
eversa, laten
y di�eren
es of inputs 
ause di�eren
es in 
orresponding mem-brane potentials, whi
h give di�erent neural populations di�erent in�uen
esin the 
ompetitive sele
tion pro
ess.Summarizing this, we propose that re
urrent neural 
onne
tions de�ne adata model for interpreting input stimuli, and that the 
on�den
e of de
isionsunder this data model 
an be en
oded into neural response laten
y. Responselaten
y 
an thus be 
onsidered a se
ondary 
oding dimension in addition to,e.g., �ring rate1, en
oding and transporting a 
on�den
e measure a
ross hier-ar
hy levels. This me
hanism e�e
tively multiplies the information 
arried byea
h neural layer without requiring additional resour
es, and 
an be extremelyuseful in real-world s
enarios where 
on�den
e measurements are importantdue to in
omplete, noisy and 
ontradi
tory sensory inputs.1.1 Biologi
al ba
kground on response laten
y and 
on�den
eThe e�e
t of response laten
y is ubiquitous in biology, and there is 
onvergingeviden
e from both physiologi
al[27,30,19,25℄ and behavioral [16,5℄ investiga-tions that it plays a role in the neural en
oding of information.Response laten
y is linked to di�erent 
auses, some of whi
h are overlap-ping: neurons in the striate 
ortex, for example, en
ode stimulus 
ontrast intoresponse laten
y[30℄. On the behavioral side, it has been found that de
isionmaking pro
esses typi
ally take longer depending on the number of 
on�i
ting1 This arti
le uses a rate-
oded model for simpli
ity, but we do not wish to ex
lude spikingmodels, where the e�e
t of response laten
y has been do
umented as well[33,36℄
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Fig. 2 Simpli�ed input stimuli leading to di�erent degrees of de
ision 
on�den
e. A)maximal 
on�den
e: a single stimulus of maximal amplitude B) redu
ed 
on�den
e dueto ambiguity/
on�i
t: a se
ond stimulus is present but of weaker peak amplitude, thus stillallowing a de
ision C) low 
on�den
e due to strong ambiguity/
on�i
t: two stimuli of equalpeak amplitude do not allow a de
ision at all D) la
k of eviden
e: a single stimulus ofsub-maximal peak amplitude. The smaller the peak amplitude, the lesser the 
on�den
e.alternatives[16℄, 
on
eivably re�e
ting in
reased response laten
y on the neu-ral level. Similar e�e
ts have been observed in language pro
essing[5℄, wherethe ambiguity, i.e., the number of di�erent interpretations, gives rise to de-layed responses. The terms '
ontrast', '
on�i
t' and 'ambiguity' that are usedin the literature for the 
auses of response laten
y denote very similar 
on-
epts. In this arti
le, we will 
hara
terize stimuli by the terms "eviden
e" (orla
k thereof) as well as "
on�i
t/ambiguity". Examples for inputs exhibitingthese properties are shown in Fig. 2.Sin
e biologi
al neural networks are strongly hierar
hi
al, the existen
e ofresponse laten
y automati
ally implies the existen
e of input laten
y at higherhierar
hy levels. In [19℄, it is spe
ulated how input laten
y 
ould be de
odedin downstream neural populations; in this 
ontribution we propose just su
ha me
hanism whi
h is 
omputationally simple and biologi
ally plausible.1.2 Related modeling workAs a network model, we 
hoose the dynami
 neural �eld (DNF) model[1,34℄,whi
h is a re
urrent, rate-
oded model originally 
on
eived to des
ribe 
or-ti
al pro
essing. Today, it is widely used for modeling memory [18,39℄, de
i-sion making [7,11℄, human-robot intera
tion[3,32℄. The model exhibits manyattra
tive properties, espe
ially 
ontinuous attra
tor dynami
s whi
h is desir-able for, e.g., generating smooth robot 
ontrol 
ommands, or for modeling thedynami
s of de
ision making[7℄.On the modeling side, response laten
y is the key idea behind the rank or-der 
oding model[13,21℄ whi
h posits that the pre
ise timing of arriving spikes,relative to stimulus onset, 
arries information about the relative importan
eof the represented 
on
epts. Some models[36℄ even 
onsider the �rst arriv-ing spikes at the ex
lusion of all others. Our �ndings are 
ompatible with allof these models, for although our investigation is based on rate-
oded modelneurons, the key �ndings that 
ertain inputs lead to qui
ker responses, andthat qui
ker responses dominate downstream pro
essing (as demonstrated forspiking networks in [33℄), are at the 
ore of this investigation.



Pro
essing and transmission of 
on�den
e in re
urrent neural hierar
hies 5When 
onsidering the larger impli
ations of how biologi
al neurons might
ompute and manipulate probabilisti
 information, there exists a large bodyof literature[23,38,15,20,38,8,29℄. There seems to be agreement that neuralpopulations represent more than just values; indeed, most authors expli
itlyassume that neural population a
tivity is related, in various proposed fash-ions, to probability or "belief" distributions[23,38,20,8,29℄. A very in�uentialidea posits that neural a
tivity is related to log-probability[8,29,15℄, whi
h isattra
tive be
ause the multipli
ation of populations a
tivities (whi
h is 
on-sidered ne
essary for integration and Bayesian inferen
e) then amounts to asimple summation whi
h neurons 
an do easily. However, other authors havequestioned the pra
ti
ability of this s
heme[23℄ as well as the basi
 assumptionthat Bayesian inferen
e is indeed implemented by multiplying the populationa
tivities in a neuron-by-neuron fashion. To the �rst point, it is 
laimed in [23℄that hierar
hi
al inferen
e steps, i.e., using the result of one neural layer asthe basis for another one, require a re-en
oding at ea
h level whi
h seems un-feasible. To the se
ond point, it is questioned[23℄ that a sensory measurementindeed 
onstitutes a probability distribution in the usual sense. Instead theauthors 
laim that ea
h neuron's �ring rate represents the realization of a ran-dom variable governed by a Poisson-like probability distribution determinedby the mat
h of a�erent input with that neuron's preferred stimulus. Thus,the mean of ea
h neuron's a
tivity is deterministi
 and governed by the degreeof mat
h. A

ording to [23℄, the fa
t that a neuron represents the realizationof a random variable, and not simply a dis
rete bin in a probability distribu-tion, makes it questionable that multiplying neural a
tivities is a statisti
allysensible thing to do in any 
ase.On the other hand, there are models of population en
oding and Bayesianinferen
e whi
h do not use log-en
oding[23,10,28,38℄ distributions, whi
h haveto resort to more 
ompli
ated s
hemes like attra
tor networks[10℄ or assump-tions about noise distributions[23℄.The presented work evidently does not use log-en
oding for representingand pro
essing probabilisti
 information; we will dis
uss its similarities anddi�eren
es to related resear
h in Se
. 4.1.3 Resear
h questions and arti
le outlineThe main point of this arti
le is the 
onstru
tion of pro
essing hierar
hiesthat take into a

ount 
on�den
e for optimal de
ision making, see Fig. 1.Working with very simple input stimuli to demonstrate essential me
hanisms,this arti
le poses and answers three resear
h questions:Q1: Can re
urrent dynami
s en
ode de
ision 
on�den
e into re-sponse laten
y? Here, we ask whether de
ision 
on�den
e, i.e., the degreeof mat
h between an input stimulus to the data model en
oded by the re-
urrent 
onne
tions, 
an be unambiguously translated into response laten
y.For su

essful en
oding, we demand that the response laten
y should be a



6 Alexander Gepperthmonotonous fun
tion of de
ision 
on�den
e. In other words: the less 
on�dentthe input, the greater the response laten
y.Q2: Can re
urrent dynami
s de
ode response laten
y? For de
oding,we demand that the ability of arriving inputs to in�uen
e attra
tor formation isa monotonously de
reasing fun
tion of their laten
y. Put brie�y: later-
ominginputs should be less likely to in�uen
e or win the 
ompetition pro
ess.Q3: Can en
oding and de
oding steps be su

essfully 
oupled? Here,we are interested in the fa
t whether two neural �elds, one en
oding and onede
oding de
ision 
on�den
e expressed as response laten
y, 
an be 
oupledsu
h that the resulting de
ision takes into a

ount 
on�den
e di�eren
es 
or-re
tlyThese questions will be addressed by simulating the neural hierar
hy de-pi
ted in Fig. 1 using the DNF model[1,34℄. After a review of the employedDNF model and its numeri
al simulation2 in Se
. 2, we will more pre
iselyde�ne the arti�
ial input stimuli in Se
. 2.3 as well as the assumed data modeland its analyti
al formulation in Se
. 2.4. The experiments 
ondu
ted in Se
. 3
orrespond dire
tly to the resear
h questions raised here, and in Se
. 4 it will bedis
ussed to what extent the experimental results give answers to these ques-tions. In Se
. 4, it will also be attempted to generalize the obtained results,suggesting how re
urrent networks 
an en
ode, and possibly learn, internaldata models. A 
riti
al dis
ussion of the impa
t of this work on neural 
oding,as well as a dis
ussion of limitations and possible future work 
on
ludes thearti
le.2 MethodsWe base our investigation on the dynami
 neural �eld model [1℄ whi
h wasoriginally proposed to des
ribe pattern formation in the visual 
ortex. Essen-tially, dynami
 neural �elds are a 
lass of re
urrent neural network modelsthat have been extensively used for modeling 
ognitive phenomena like de-
ision making [6℄, motor planning [11℄, spatial 
ognition [18℄, eye movementpreparation [37,31℄ and obje
t re
ognition [12,9℄. Basi
 elements are simpledynami
-state neurons, a �xed lateral 
onne
tivity, and a (usually sigmoid)non-linearity.2.1 Model equationsWe use a slightly more general version of the original model in the sense thata�erent and lateral terms 
an be weighted di�erently using the 
oe�
ients2 Python/C 
ode implementing all simulations of this arti
le is available underwww.gepperth.net/alexander
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α, β:

τu̇(x, t) = −u(x, t) + αS(x, t)

+ β

∫

w(x − x′)′f [u(x′, t)]dx′+ γσ(x, t) + h (1)where f [u(x, t)] =
1

1 + exp(−2(u(x,t)−θ)
ν

)Here, the quantity u(x, t) represents the membrane potential of the �eld attime t and position x, S(x, t) the a�erent input, w(x − x′) the �xed lateralintera
tion kernel, f [u] the non-linearity or transfer fun
tion, and σ(x, t) nor-mally distributed white noise. τ determines the time s
ale of �eld evolution,and h is the resting potential, i.e., the equilibrium potential in 
ase of noinput. We 
hoose a sigmoid transfer fun
tion, parametrized by a thresholdand a gain value: θ, ν. The 
oe�
ients α, β and γ respe
tively determine the
ontribution of the a�erent input, the lateral re
urrent intera
tions and thenoise. The intera
tion kernel w(x − x′) is usually 
hosen to be symmetri
:
w(x − x′) = a0Gµ=0,σon(x − x′) − b0Gµ=0,σo�(x − x′) − c0, where Gµ=0,σ(x)denotes a Gaussian with mean µ and standard deviation σ, and σon < σo�.The 
onstants a0, b0, c0 are 
hosen suitably to a
hieve the desired level of lo
alex
itation/inhibition(a0, b0) as well as global inhibition (c0). To ensure numer-i
al stability, we 
lip the neural �eld potentials u(x, t) whenever they ex
eedthe range de�ned by [umin, umax].2.2 Numeri
al simulationFor performing numeri
al 
omputations, neural �elds potentials are dis
retizedto a grid ofN×N "neurons", denoted by û(x, t). The lateral intera
tion �lter ŵis dis
retized as well, having a width of 5σo� elements, while global inhibition isobtained by summing all elements in the dis
retized �eld. Thus, for dis
retizedneural �elds, the update equation reads

û(x, t+ 1) =

(

1−
1

τ

)

û(x, t) +
1

τ
×

×

[

αŜ(x, t) + β
∑

|x′|,|y′|<2.5σo�ŵ(x′, y′)f

[

û

((

x− x′

y − y′

)

, t

)]

+

+ βc0
∑

x′

f [u(x′, t)] + γσ̂(x, t) + h

] (2)2.3 Used stimuliAs mentioned in Fig. 1, we will use syntheti
 input stimuli S ≡ S(x, t) in ourexperiments in order not to 
ompli
ate the demonstration of the desired e�e
ts



8 Alexander Gepperthby subtleties of real-world data pro
essing. Stimuli S 
onsist of two Gaussian"bubbles", at two �xed positions, with equal varian
es (see, e.g., [34℄), whi
hhave peak values A1, A2 ∈ [0, 1]. We furthermore assume that S is a version ofthe "true" underlying stimulus M whi
h is 
orrupted by stru
tured noise, andthat M 
ontains only a single Gaussian at one of the two allowed lo
ations. M
an therefore be des
ribed by two numbers M1,M2 ∈ {0, 1}, M1 +M2 = 1,indi
ating the amplitude of Gaussians at ea
h of the two lo
ations. Examplestimuli S are shown in Fig. 2. For simpli
ity, we will often refer to a stimuluswhere only one Gaussian is present as "left" or "right" depending on theGaussian's lo
ation.2.4 Impli
it and expli
it data model formulationBy the assumptions about the "true" stimulus M underlying a sensory mea-surement S as indi
ated in the previous se
tion, we impli
itly de�ne a datamodel requiring a single lo
alized a
tivity peak of a 
ertain size. This �ts wellthe per
eptual de
ision making s
enario of Fig.1 and is roughly realized by the"default" lateral 
onne
tivity often used with DNFs, that is to say, Mexi
anhat intera
tion kernels with added global inhibition. This data model gives im-mediately rise to notions of stimulus 
on�den
e, leading to the simple 
on
eptsof 
on�i
t/ambiguity or la
k of eviden
e as illustrated in Fig. 2.However, in order to theoreti
ally verify the 
orre
tness de
ision makingusing 
orrupted stimuli S using Bayesian inferen
e te
hniques, we require anexpli
it probabilisti
 model P (M|S), relating S and M, the "true" underlyingstimulus. This amounts to spe
ifying the probability of a 
ertain M beingpresent given its 
orrupted measurement S. Su
h a data model is a highlyuseful tool, if available, sin
e it 
an be used for the following purposes:� it de�nes sets of allowed or forbidden stimulus values stimulus values
M+,M− 
hara
terized by p(M|S) > 0∀M ∈ M+ and p(M|S) ≡ 0∀M ∈
M−� it allows to estimate the most probable "true" stimulus M

∗ given a 
or-rupted stimulus S as M∗ = argmax
M
p(M|S)� it allows to assign a 
on�den
e c = P (M∗|S) to the most probable truestimulus. It is this 
on�den
e that should be transmitted to a subsequenthierar
hy stageIn this arti
le, we will 
onsider only stimuli of a very simple nature, both
on
erning M and S as outlined in Se
. 2.3. In line with our de�nitions ofambiguity, 
on�i
t and la
k of eviden
e as illustrated in Fig. 2, the data modelshould have the following simple properties:� punish ambiguity or 
on�i
t: Ideally, only one dominant Gaussianshould be present in the input. Con�den
e should de
rease if the se
ondGaussian has a nonzero peak value� punish la
k of eviden
e. Ideally, this single Gaussian should have a peakvalue of 1.0. If it is lower, the 
on�den
e should de
rease.
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essing and transmission of 
on�den
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urrent neural hierar
hies 9Table 1 Parameters used in the simulation experimentsparameter value fun
tion parameter value fun
tion
τ 15 time 
onstant umin -2 min. �eld potential.
α 1 input strength umax 3 max. �eld potential
β 4 lat. int. strength θ 0.5 transfer fun
. thresh
γ 0.005 noise strength ν 2.5 transfer fun
. slope
h -1.0 resting potential σon 6 inhibition radius
a0 1 on �lter strength b0 3 o� �lter strength
c0 0.10 global inhibition σon 3 ex
. radius
σo� 6 inh. radius NxN 32 neurons
T 280 iterations/pattern� punish la
k of mat
h. If the dominant Gaussian of the stimulus S isdi�erent from the peak in M, probability should drop sharplyThe pre
ise form of the model is not important for de
ision making as long asthose properties are ful�lled. A simple 
hoi
e of model is, for example:

P (S|M) ∼ exp

(

−
|A1 −M1|+ |A2 −M2|

σ

) with σ = 0.2 (3)By assuming that all stimuli M are equally probable a priori, P (M) = 
onst.,we obtain an a posteriori probability distribution representing the sought-fordata model:
P (M|S) = P (S|M) (4)When performing de
ision making experiments in Se
. 3, this model will beused for verifying the 
orre
tness of the de
isions. The fundamental assumptionof this arti
le is that neural �eld layers with a 
orre
t 
hoi
e of parametersand lateral 
onne
tions 
an approximate su
h a model by their dynami
s. Inparti
ular, we assume that the �nal 
onverged state of ea
h layer representsthe MAP estimate of this layer's inputs, and that the response laten
y of this
onverged state en
odes its 
on�den
e under the data model.The experiments of the following se
tion will show that this is the 
ase atleast for the simple stimuli used here.3 ExperimentsIn all experiments, several input patterns (see Fig. 3) are presented to thenetwork(s) for T iterations, in whi
h time the network dynami
s are simulateda

ording to eqn. (2). Before ea
h pattern presentation, all network potentialswere reset to the value of the resting potential h. Unless stated expli
itly, weuse the parametrization indi
ated in Tab. 1 in all experiments of this se
tion.These parameters ensure that neural layers 
onverge to single-peak solutionsand are thus in a

ordan
e with the analyti
al model of Se
. 2.4, see [26℄ fora theoreti
al justi�
ation. The 
hoi
e of good parameters for DNFs is slightly



10 Alexander Gepperth

Fig. 3 Variable input stimuli used in our experiments (lower row), leading to de
isions(upper row) of variable 
on�den
e expressed by response laten
y. A) Variation of 
on-�i
t/ambiguity, modelled by the di�eren
e ∆A of the peak amplitudes of the left and rightGaussian. B) Variation in the degrees of eviden
e, modelled by the peak amplitude A ofthe single Gaussian stimulus C) Variation of relative laten
y ∆t for a 
omposed stimulus.In this 
ase, ea
h of the Gaussians has the same amplitude A1 = A2 = 1, whereas theirrelative laten
y is varied, thus giving ea
h Gaussian a di�erent in�uen
e on the dynami
sof the neural layer.tri
ky, espe
ially if we wish to observe laten
y e�e
ts. However we have goodreasons to believe that most of the parameters 
an in prin
iple be determinedfrom data using self-adaptation pro
esses as des
ribed, e.g., in [24℄. There werea few prin
iples that we found useful in guiding our 
hoi
e of parameters:� No lateral intera
tions in the resting state: This implies that f(h) ≈ 0, andthus 
onstraints on ν and θ are introdu
ed� Potential 
ut-o� must not introdu
e new e�e
ts. This implies that f(umax) ≈
1 and f(umin) ≈ 0 whi
h 
an be obtained by a proper setting of umin, umax.� Lateral and a�erent inputs to any neuron should be, on average, of similarmagnitude. This mainly 
onstrains α, β and γ.3.1 En
oding ambiguity/
on�i
t into response laten
yIn the �rst experiment, we will demonstrate that a proper parametrizationof neural layers 
an a
hieve an unambiguous translation of ambiguity/
on�i
t(see Fig. 2) into response laten
y. To show this, we will su

essively applystimuli of varying degrees of 
on�i
t/ambiguity to the neural layer and mea-sure the response laten
y of the winning peak. Using input data a

ordingto Se
. 2.3 and Fig. 3 A), we 
reate two Gaussian stimuli with initial ampli-tudes A1 = 1, A2 = 0, where the "true" solution is supposed to be "left", i.e.,

M1 = 1, M2 = 0. In su

essive steps we in
rement the amplitude A2 su
h thatthe di�eren
e in amplitudes, ∆A, goes from its initial value of 1.0 to 0.0, whi
halways leads to a "left" solution ex
ept for ∆A = 0. Evidently, this variationof A2 redu
es the probability P (”left”|S) of the attra
tor solution under theprobabilisti
 model of. (3). As shown in Fig. 4 (left), we observe a monotonous
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Fig. 4 En
oding of de
ision 
on�den
e using single neural layers for input stimuli S withdi�erent types of stru
tured noise: "ambiguity/
on�i
t" (left diagram) as well as "la
k ofeviden
e" (right diagram). Peaks always develop on the "right" position in the en
oding�eld with an input-dependent laten
y, expressing the MAP estimate along with a de
ision
on�den
e. Both graphs show a monotonous relationship between response laten
y and theprobability under the analyti
al data model, P (”right”|S), underlining the relatedness ofthose quantities. For ea
h measurement point in both graphs, the asso
iated parameters ofthe input stimulus are given as well: either the di�eren
e between 
on�i
ting peak amplitudes
∆A, or the strength of the single peak A.but nonlinear relationship between P (”left”|S) and response laten
y, showingthat the latter 
an indeed be used unambiguously to express the former.
3.2 En
oding la
k of eviden
e into response laten
ySimilarly to the previous se
tion, we 
reate input stimuli a

ording to Se
. 2.3and Fig. 3B), although now with only one Gaussian "left" stimulus whoseamplitude A is varied from 1.0 to 0.9, thus redu
ing 
on�den
e of the attra
torsolution P (”left”|S) 
omputed using eqn. (3). The "true" stimulus is supposedto be "left", i.e.,M1 = 1,M0 = 0. As 
an be observed in Fig. 4 (right), there is amonotonous, almost linear relation between P (”left”|S) and response laten
y.This result shows that what we 
alled "la
k of eviden
e" in Se
. 1 redu
es the
on�den
e of de
isions under the analyti
 data model, and that this 
on�den
eis unambiguously represented by response laten
y.The reason we keep the amplitude of the Gaussian in the range of [0.9,1.0℄is that the laten
ies grow ex
essively for A → 0.9, up to the point whereno a
tivation is produ
ed at all within T iterations for A < 0.9. While itis straightforward to �nd neural layer parameters that allow the represen-tation of A < 0.9, they are usually not 
ompatible with the en
oding ofun
ertainty/ambiguity demonstrated in Se
. 3.1 when the full range of un-
ertainty/ambiguity should be represented. This seems to be a 
onstraint ofthe re
urrent networks model, see Se
. 4. As this arti
le fo
uses more on therepresentation of ambiguity/
on�i
t, we demonstrate the en
oding of "la
k ofeviden
e" for 
ompleteness, but will not use it further in what follows.
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∆tFig. 5 De
oding response laten
y. The experiment 
onsiders a single neural layer re
eivingan input 
omposed of two equally strong Gaussian stimuli (denoted "left" and "right")with relative laten
y ∆t. Depending on the ∆t, a peak forms either at the "left" or the"right" position (green/red 
urves), with a laten
y depending on ∆t whi
h 
an be seen inthe diagram. For ∆t = 0, no peak forms during the observation interval, 
orresponding tothe refusal to take an impossible de
ision.3.3 De
oding response laten
yAfter having shown that de
ision 
on�den
e is translated unambiguously intoresponse laten
y, we are now going to show that laten
y 
an be de
oded toin�uen
e de
ision-making in just the right way. For this purpose we will presenta neural layer with an input 
ontaining two Gaussians of equal peak amplitude

A1 = A2 = 1, arriving with di�erent laten
ies t1, t2. We assume the "true"stimulus to reside at the lo
ation of the earlier-arriving Gaussian. This isintended to emulate the situation where these two Gaussians 
ome from twoseparate neural layers fa
ed with inputs of di�erent 
on�den
e, see Fig. 3D).As a two-peak input does not �t the impli
it data model of the neural layer,it is for
ed to take a de
ision, and we want to �nd out how this de
ision isa�e
ted by the relative laten
y ∆t.As 
an be observed in �g. 5, we �nd that ∆t has a strong in�uen
e on de-
ision making. Not only does the �rst-arriving Gaussian 
ompletely dominatethe layer's response, but we also �nd that, as ∆t de
reases, response laten
yin
reases monotonously. Both �ndings are intuitive in the sense of optimalde
ision making: as the laten
y of inputs 
an be linked to the 
on�den
e ofthe de
isions that generated them (see Se
. 3.1), a good de
ision must be infavour of the earlier (i.e., more 
on�dent) input. Likewise, if two inputs havesimilar laten
ies (i.e., 
on�den
es), the 
on�den
e of the de
ision should belowered, whi
h is expressed by in in
rease in laten
y. This supports the 
on-stru
tion of deeper hierar
hies, sin
e the de
ision of the de
oding �eld hasitself a 
on�den
e that is again expressed as response laten
y.
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Fig. 6 S
hemati
s of the three-stage hierar
hy of re
urrent neural layers used for the testingof optimal de
ision making. The variable noise in the input to I1, and the �xed noise in theinput to I2 are translated into variable and �xed laten
ies of neural responses in I1 and I2.For simpli
ity, stimuli are 
hosen su
h that the "right" stimulus always wins the 
ompetitionin I1, whereas the "left" stimulus always wins in I2. This leads to a 
ompetition betweenthose two positions in D, whi
h de
ides between "left" and "right" based on the relativelaten
y of inputs from I1 and I2.3.4 Optimal de
ision making in a hierar
hyAfter the preparations of the previous subse
tions, we are now ready to 
on-stru
t a 3-stage hierar
hy out of identi
al neural layers. The hierar
hy is 
on-stru
ted as shown in Fig. 6, and all layers use the parameters of Tab. 1. Twolow-level layers, I1 and I2, en
ode the 
on�den
e (whi
h is varied for I1) oftheir inputs into response laten
y, whi
h is in turn de
oded by the �eld D.As we know that the impli
it data model of neural �elds, en
oded intotheir 
onne
tivity and dynami
s, 
an approximate the analyti
al data modelof Se
. 2.4 as shown in Se
s. 3.1, 3.2, 3.3, this experiment is meant to de-termine whether a deeper hierar
hy will respe
t the analyti
al data modelas well, amounting to optimal de
ision making behavior in D for arbitraryde
ision 
on�den
es in I1 and I2. Inputs to both I1 and I2 are of the "
on-�i
t/ambiguity" type illustrated in Fig. 3A): Whereas the 
on�den
e in I2 iskept 
onstant by using a 
onstant di�eren
e between peak amplitudes ∆A2= 0.6, the 
on�den
e in I1 is varied by manipulating the amplitude di�eren
e
∆A1 in analogy to in Se
. 3.1.To determine the optimal de
ision to be taken by D, we need to 
al
ulatethe a posteriori distribution P (M|S1S2). Assuming independen
e of S1 and
S2, we 
an simply multiply and obtain

P (M|S1S2) = P (M|S1)P (M|S2) (5)To obtain a de
ision, we must 
ompare the a posteriori probabilities P (”left”|S1S2),
P (”right”|S1S2). To this e�e
t, we 
al
ulate the sign of the log-odds-di�eren
e
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A) 1B) 1C) 1D) 1E) 1F) 1G) 1H) 1I) 1Fig. 7 Optimal de
ision making in a three-stage hierar
hy, see also Fig. 6 and text. Low-level de
isions de
isions and their 
on�den
es, arising from a variable "ambiguity/
on�i
t"type of input (parametrized by ∆A, the di�eren
e between peak amplitudes) to the lower-level �eld I1, are de
oded by the high-level �eld D to take a Bayes-optimal de
ision. Shownis the temporal development of neural a
tivities in D at the positions of the "right" (redgraphs) and "left" (green graphs) stimuli. The blue line indi
ates the theoreti
al log-odds-di�eren
e whi
h indi
ates the optimal de
ision ("left"/"right") by its sign. Left: 
oarseresolution 
overing the 
omplete range of ∆A. Right: �ner resolution around the pivotalpoint of ∆A = 0.6.(LOD): sgn (LOD) = sgn(log P (left|S1S2)

P (right|S1S2)

)

= sgn (logP (left|S1S2)− logP (right|S1S2)) =

= sgn(6− 10∆A1). (6)Given the nature of the inputs S1,S2 as depi
ted in Fig. 6, D should de
ide"right" if sgn (LOD) = 1, it should not de
ide if this quantity is zero, and itshould de
ide "left" when it is −1. When viewing the results given in Fig. 7,the de
ision behavior exhibited by D exa
tly mat
hes the optimal de
isionsindi
ated by the LOD 
al
ulation. We observe that, for ∆A1 > ∆A2, the"right" stimulus from I1 wins the 
ompetition in D as it is more 
on�dent;similarly, the "left" stimulus from I2 wins for ∆A1 < ∆A2 = 0.6. At ∆A1 =
∆A2, output in I1 and I2 have equal 
on�den
e, re�e
ted in a refusal of D totake a de
ision (no signi�
ant a
tivity develops either at the "left" or "right"position).3.5 Resolution of de
ision making in a hierar
hyAs neural responses are usually quite noisy, this will obviously a�e
t a neu-ral 
ode using response laten
y. We therefore wish to know how the (weak)noise we simulate in our neural layers a�e
ts de
ision making when takingnear-ambiguous de
isions. As shown in Fig. 7 (right), de
ision making is stilloptimal in 
ases where amplitude di�eren
es in I1 and I2 do not get too sim-ilar. An ex
eption are 
ases where amplitude di�eren
es are within 0.02 of
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h other (e.g., 
ase D) in Fig. 7) (right): here the resolution of response la-ten
y is apparently insu�
ient to en
ode and de
ode 
on�den
e with su�
ientpre
ision. For these borderline 
ases, the behavior of D has a strong random
omponent, that is to say, the de
ision taken by D depends on the pre
iseform and the initial 
onditions of the noise.4 Dis
ussionIn this se
tion, we will �rst review the results that were obtained, then pointout and dis
uss topi
s that merit spe
ial attention, as well as list short
omingsand limitations of our work. As a last point, we will try to generalize the�ndings of this arti
le, and 
on
lude with an outlook of future work.4.1 SummaryWe presented experiments that perform statisti
ally optimal de
ision mak-ing in a 3-layer hierar
hy of re
urrent neural layers, implemented as dynami
neural �elds. It was shown that, as a 
onsequen
e of the non-linear re
urrentdynami
s in ea
h layer, 
on�i
t/ambiguity or la
k of eviden
e in input stimuli
an be unambiguously en
oded as response laten
y of attra
tor states. Simi-larly, response laten
y 
an be de
oded by subsequent hierar
hy stages, takinginto a

ount the 
on�den
e of lower-level de
isions. Finally, it was veri�ed by
omparison to an exa
t probabilisti
 model that a hierar
hy of neural �elds 
anindeed take Bayes-optimal de
isions by exploiting the information 
ontainedin response laten
y, and that this ability is robust to moderate noise levels.4.2 Parti
ular pointsParametrization All of the aforementioned fun
tions were realized by �ndingappropriate parametrizations for the DNF model, not by making 
hanges tothe model itself. It is important to note that the en
oding and de
oding of la-ten
y are inherent in the neural dynami
s when 
orre
t parameters are 
hosen.Clearly, the parameters of di�erent neural layers in a hierar
hy need not beidenti
al; however it is imperative that the 
hosen parameters allow ea
h neu-ral layer to en
ode and de
ode laten
y within the simulation time for a singlestimulus, T . Fortunately, using the guidelines for parametrization mentionedin Se
. 3, we were able to �nd a single set of parameters appropriate for allhierar
hy layers. That en
oding and de
oding 
an be performed with the sameparameter settings is not self-evident, but we found, in the 
ourse of numerousexperiments, that parameters allowing en
oding were almost always suited forde
oding as well. Sin
e the pro
ess of �nding the required parameter valuesis not straightforward at all, we believe self-adaptation pro
esses[35,24℄ mustbe applied to automate the pro
ess of adapting parameters to data statisti
s.
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e laten
y en
oding and de
oding were found to work for any parametriza-tion where input stimuli 
ould 
reate an attra
tor in less that T iterations,self-adaptation pro
esses would just have to ensure that this 
ondition is met,e.g., by maintaining temporal averages of neural a
tivations over single pat-tern presentation (T iterations) at some target value. If no a
tivations appearwithin T iterations, su
h averages would be too low, while they would be toohigh if neurons were 
onstantly a
tive over the whole period [0, T ].Representation of probability In the presented study, we e�e
tively assumethat re
urrent neural dynami
s approximate a probabilisti
 data model P (M|S)for the "true" values of input variable M given the a�erent inputs S whi
hare a�i
ted by (stru
tured) noise. At least for simple stimuli, we have shownthat our re
urrent network approa
h represents both the MAP estimate M∗ =arg maxP (M|S) (represented by the position of the lo
alized attra
tor solu-tion), as well as a nonlinear transformation of P (M∗|S) itself (represented byresponse laten
y). As 
an be seen from the results of Se
. 3.1, this en
odingof the de
ision 
on�den
e P (M∗|S) is one-to-one but non-linear, so that re-sponse laten
y does not dire
tly represent a probability here. This is howevernot required to take 
orre
t de
isions: as all we need to do is to 
ompare laten-
ies in di�erent areas of the input while assuming they were generated usingthe same underlying data model. In this study, the model P (M|S) is e�e
-tively unimodal be
ause a single Gaussian is assigned the highest a posterioriprobability. This is re�e
ted in the lateral 
onne
tivity of the used networkswhi
h lo
ally favors Gaussian a
tivation peaks but restri
ts their number toone due to global inhibition. There is however nothing whatsoever to keep usfrom implementing or learning other, more general data models by adaptingthe lateral 
onne
tivity stru
ture of re
urrent networks.Comparison to related work When 
onsidering the representation of probabil-ity we dis
ussed in the last paragraph, several important di�eren
es to relatedwork are notable: First of all, and di�erent from [15,29,8℄, our approa
h doesnot treat neural a
tivities as log-probabilities. More generally, and in line with[23℄, we do not treat the set of input a
tivations S as a probability distri-bution but as a 
olle
tion of physi
al measurements 
orrupted by noise. In
ontrast to [23℄, however, we do not require this noise to have a parti
ularform as long we 
an represent it in our internal data model P (M|S), en
odedin the lateral 
onne
tions of ea
h layer. A further di�eren
e to [23℄, who 
on-sider Bayesian integration separately for ea
h neuron, is that we 
onsider datamodels that are global in the sense that they 
onsider the values of other, notne
essarily adja
ent neurons in the 
omputation of the a posteriori probability.Summarizing, this arti
le suggests a new way of approximately representingand pro
essing probabilisti
 information in neural hierar
hies whi
h is quitedi�erent from what has been proposed in previous works, although it has beenvalidated only for very simple stimuli. To be fair, on the other hand, mostprevious work on the subje
t uses test stimuli of similar simpli
ity with thepossible ex
eption of [29℄.
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hies 174.3 LimitationsNoise In the simulations of Se
. 3, noise was kept at an intermediate level,and we 
ould show that the "resolution" for stimuli whose 
on�den
e was sim-ilar was in fa
t quite good, see Se
. 3.5. Experiments 
ondu
ted with higherlevels of noise show that stimuli of similar 
on�den
e 
an inter
hange theirtemporal order as a 
onsequen
e of noise. To rea
t to this loss of resolution,the parameters of neural layers must be adapted su
h that the range of 
on�-den
es that 
an be represented is narrowed, giving more resolution to the high
on�den
es and dropping the lower ones. At the same time, the me
hanismsunderlying attra
tor formation 
ould be revisited and adapted, thus makingthem less sus
eptible to noise. Clearly, the behavior of our approa
h understronger noise merits further attention.Can every probabilisti
 model be approximated? In the analysis of the experi-ment of Se
. 3.2, it was mentioned that we were unable to �nd a set of param-eters for whi
h the neural layers 
ould represent the full range of 
on�den
esarising from either la
k of eviden
e and ambiguity/
on�i
t. Maybe su
h pa-rameters exist, but we believe it is more likely that not every 
on
eivable modelmay be approximated faithfully by re
urrent neural dynami
s. What 
an bedone, however, is to restri
t the range of represented 
on�den
es both for 
on-�i
t/ambiguity and la
k of eviden
e to a point where both 
an be representedfaithfully, at the 
ost of not representing some of the less 
on�dent patterns.We do not 
onsider this to be a signi�
ant problem sin
e only the least 
on-�dent inputs would have to be disregarded (who would not win subsequent
ompetitions in any 
ase). Nevertheless it will be worth investigating whether,and how, the greatest possible set of sensible data models 
an be approximatedby re
urrent dynami
s.Loss of information in deeper hierar
hies The basi
 
reed of Bayesian datapro
essing[4℄ is to always transmit and manipulate distributions, and to takethe �nal de
isions only at the end of a pro
essing 
hain by 
hoosing the argmaxof the �nal distribution. This is 
learly a very intelligent strategy sin
e noinformation is lost on the way through, e.g., a de
ision hierar
hy. Thus, ifapparently irrelevant alternatives are not already disregarded at low hierar
hystages, they might still 
hange the �nal de
ision when integrated at higherstages. The presented study outlines a possible way towards this goal, foralthough 
ompeting stimuli do get suppressed at the lowest hierar
hy stages,see Se
. 3.4, at least the fa
t that something signi�
ant was suppressed istransmitted as 
on�den
e, and taken into a

ount at the next stage. What ismore, with another data model that allows for several lo
alized stimuli in theinput, alternatives 
ould be transmitted through the hierar
hy. Nevertheless,ea
h hierar
hy stage potentially suppresses information using its data model,and thus the full "Bayesian dream" is not yet realized by our approa
h. It 
an(and should) of 
ourse be debated whether a full Bayesian treatment is reallyrequired for robust real-world pro
essing, or whether the 
hosen approximation
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ial, as transporting the full probabilisti
information might be strongly sus
eptible to noise as well.Generality The results presented here were obtained using the dynami
 neural�eld model as a basis for simulation, so we wish to dis
uss how our results willgeneralize to other re
urrent network models, espe
ially spiking ones. Thisof 
ourse depends to a great extent on the pre
ise form of the used modelequations, but at least for spiking models using an integrate-and-�re typeof update equation we 
an be reasonably sure that our �ndings will holdtrue. As response laten
y is due to delayed build-up of membrane potential(
aused by lateral inhibition), and sin
e the basi
 update equation for themembrane potential in integrate-and-�re models is identi
al to eqn. (1) ex
eptfor spike generation and re
eption, the same me
hanism should apply, althoughof 
ourse with di�erent parameters. This assumption is supported by reportsof response laten
y in [33℄ with integrate-and-�re models.5 Outlook and future workAs we already mentioned the previous se
tion, it is for the most part the lat-eral 
onne
tion weights of a re
urrent neural layer that en
ode the data model
P (M|S). In the present study, this model was very naive in just admittinga single Gaussian a
tivity peak as an attra
tor solution whi
h we assume torepresent the MAP estimate M∗ = arg maxP (M|S). The advantage of us-ing a neural network is that lateral 
onne
tion weights, and thus an internaldata model, 
ould be learned from data statisti
s by simple 
orrelation-basedrules. On the minus side, this would require giving up the notion of a lo
ation-independent 
onvolution kernel in eqn.(1), resulting in mu
h higher memory
onsumption. Nevertheless, this would allow to model real-world inputs 
om-ing, e.g., from a visual sensor, and to use the internal data model to dete
tdeviations from the ordinary for more robust pro
essing. This will be espe
iallyrelevant for our work on autonomous and self-organized learning in real-worlds
enarios (see, e.g., [14℄), where it must be determined whether 
omplex newrepresentations of visual stimuli are out of the ordinary, and should thus trig-ger learning. The detail of su
h a 
ombined learning pro
ess will 
ertainly bethe subje
t of future work, as well as the question of how to self-adapt theother parameters of a re
urrent network to best mat
h the data statisti
s.Furthermore, the in�uen
e of noise on the laten
y 
ode will have to be in-vestigated with the goal of allowing optimal de
ision making even in the fa
eof strong noise. All these e�orts will lead to a better understanding of howthe human brain pro
esses probabilisti
 information, with the aim of 
reatingmore robust intelligent systems operating under real-world 
onditions.
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