Neural Processing Letters manuscript No.
(will be inserted by the editor)

Processing and transmission of confidence in
recurrent neural hierarchies

Alexander Gepperth

Received: date / Accepted: date

Abstract This article addresses the construction of hierarchies from dynamic
attractor networks. We claim that such networks, e.g., dynamic neural fields
(DNFs), contain a data model which is encoded in their lateral connections, and
which describes typical properties of afferent inputs. This allows to infer the
most likely interpretation of inputs, robustly expressed through the position
of the attractor state. The principal problem resides in the fact that positions
of attractor states alone do not reflect the quality of match between input and
data model, termed decision confidence. In hierarchies, this inevitably leads to
final decisions which are not Bayes-optimal when inputs exhibit different de-
grees of ambiguity or conflict, since the resulting differences in confidence will
be ignored by downstream layers. We demonstrate a solution to this problem
by showing that a correctly parametrized DNF layer can encode decision confi-
dence into the latency of the attractor state in a well-defined way. Conversely,
we show that input stimuli gain competitive advantages w.r.t. each other as
a function of their relative latency, thus allowing downstream layers to decode
attractor latency in an equally well-defined way. Putting these encoding and
decoding mechanisms together, we construct a 3-stage hierarchy of DNF lay-
ers and show that the top-level layer can take Bayes-optimal decisions when
the decisions in the lowest hierarchy levels have variable degrees of confidence.
In the discussion, we generalize these findings, suggesting a novel possibility
to represent and manipulate probabilistic information in recurrent networks
without any need for log-encoding, just using the biologically well-founded
effect of response latency as an additional coding dimension.
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Fig. 1 Motivation and basic setting for the presented work. Left: Perceptual decision hier-
archy making use of response latency for optimal decision making. We imagine a hierarchical
cortical network analyzing a small image patch (red rectangle) and analyzing it along two
(or several) visual modalities as it has been demonstrated in lower visual areas of mammals.
The (fixed) feed-forward connections between layers (A,B) cause feature selectivity in layer
1/2 neurons (indicated by small symbols for some neurons) whereas the (fixed) lateral con-
nections (C) contain the data model for inputs to layers 1/2. Violations of this data model,
e.g., by strong co-activation of unimodal layer 1 neurons, will amplify unimodal response
latency, thus reducing influence on the multimodal integration layer 2. Right: actual neu-
ral hierarchy considered in this article. Layers (implemented by dynamic neural fields) and
visual modalities correspond to the left diagram but stimulus structure has been simplified
to admit only two possible stimulus types in each modality. For simplicity, these will often
be termed the "left" and "right" stimulus. During experiments, one modality will always
receive the same layer O inputs, whereas the other modality will receive inputs leading to
variable decision confidence, and the resulting decisions in layers 1 and 2 will be observed.

1 Introduction

The issue of constructing deep neural hierarchies has recently received con-
siderable interest, sparked mainly by research in deep belief networks (DBNs,
[17,2]) and convolutional hierarchies|22]. These approaches are successful in
several application scenarios but do not make use of the fact that each layer
in biological processing hierarchies has strong lateral connections, leading to
complex non-linear dynamics within a single layer. Therefore, one may spec-
ulate that the computational potential of processing hierarchies constructed
from recurrent neural layers might be even higher than that of present-day
DBNs. Building such recurrent hierarchies is however tricky due to the inher-
ent non-linear behavior of recurrent layers, and a way needs to be found to
make the nonlinear dynamics work for us’ instead of ’against us’.

In order to illustrate the basic issues when constructing deep hierarchies
using recurrent neural layers, we will use perceptual decision making as an
example, considering a decision-making task depicted in Fig. 1. It exhibits a
two-level hierarchy where the high-level decision integrates two lower-level de-
cisions about the interpretation of complementary sensory input flows. Such
interpretations are always based on an implicit model of the "true" nature
of inputs which we denote a data model. Such data models are highly impor-
tant for real-world processing as inputs may be be corrupted by (structured
and complex) noise. Using data models, however, the most likely interpreta-
tion given the data model can be computed before transmission to subsequent
hierarchy levels, thus removing noise and increasing signal quality. Such in-
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terpretations amount to decision making about which parts of a stimulus, if
any, to discard and which ones to keep. Consequently, each perceptual deci-
sion can be attributed a confidence value depending on the data model. For
stimuli which have a common cause in the external world, as in the example of
Fig. 1, only a single of the feature-selective patches can be active at the same
time, that is to say: the data model must assign a lower confidence to inputs
with, e.g., ambiguity or conflict. As inputs to the lower hierarchy levels may
cause different degrees of decision confidence, it is imperative to take these
confidences into account if the high level is to take Bayes-optimal decisions!

However, as recurrent attractor networks usually converge to an attractor
state representing only the strongest input, no information about the con-
fidence of lower-level decisions remains in the converged network states. To
remedy this, we investigate a possibility of including confidence information
in neural responses, in such a way that confidence can easily be encoded, and
equally easily be decoded by subsequent layers. As it turns out, it is the non-
linear dynamics themselves that can, when parametrized correctly, naturally
implement such a mechanism. Due to the nonlinear build-up of membrane
potential in model neurons, as well as due to competitive interactions, input
confidence according to Fig. 2 can be translated into response latency, i.e.,
the time from stimulus onset to the development of significant activity. Vice
versa, latency differences of inputs cause differences in corresponding mem-
brane potentials, which give different neural populations different influences
in the competitive selection process.

Summarizing this, we propose that recurrent neural connections define a
data model for interpreting input stimuli, and that the confidence of decisions
under this data model can be encoded into neural response latency. Response
latency can thus be considered a secondary coding dimension in addition to,
e.g., firing rate!, encoding and transporting a confidence measure across hier-
archy levels. This mechanism effectively multiplies the information carried by
each neural layer without requiring additional resources, and can be extremely
useful in real-world scenarios where confidence measurements are important
due to incomplete, noisy and contradictory sensory inputs.

1.1 Biological background on response latency and confidence

The effect of response latency is ubiquitous in biology, and there is converging
evidence from both physiological|27,30,19,25] and behavioral [16,5] investiga-
tions that it plays a role in the neural encoding of information.

Response latency is linked to different causes, some of which are overlap-
ping: neurons in the striate cortex, for example, encode stimulus contrast into
response latency[30]. On the behavioral side, it has been found that decision
making processes typically take longer depending on the number of conflicting

L This article uses a rate-coded model for simplicity, but we do not wish to exclude spiking
models, where the effect of response latency has been documented as well[33,36]
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Fig. 2 Simplified input stimuli leading to different degrees of decision confidence. A)
maximal confidence: a single stimulus of maximal amplitude B) reduced confidence due
to ambiguity/conflict: a second stimulus is present but of weaker peak amplitude, thus still
allowing a decision C) low confidence due to strong ambiguity/conflict: two stimuli of equal
peak amplitude do not allow a decision at all D) lack of evidence: a single stimulus of
sub-maximal peak amplitude. The smaller the peak amplitude, the lesser the confidence.

alternatives[16], conceivably reflecting increased response latency on the neu-
ral level. Similar effects have been observed in language processing[5], where
the ambiguity, i.e., the number of different interpretations, gives rise to de-
layed responses. The terms ’contrast’, ’conflict’ and ’ambiguity’ that are used
in the literature for the causes of response latency denote very similar con-
cepts. In this article, we will characterize stimuli by the terms "evidence" (or
lack thereof) as well as "conflict/ambiguity". Examples for inputs exhibiting
these properties are shown in Fig. 2.

Since biological neural networks are strongly hierarchical, the existence of
response latency automatically implies the existence of input latency at higher
hierarchy levels. In [19], it is speculated how input latency could be decoded
in downstream neural populations; in this contribution we propose just such
a mechanism which is computationally simple and biologically plausible.

1.2 Related modeling work

As a network model, we choose the dynamic neural field (DNF) model[1,34],
which is a recurrent, rate-coded model originally conceived to describe cor-
tical processing. Today, it is widely used for modeling memory [18,39], deci-
sion making [7,11], human-robot interaction|3,32]. The model exhibits many
attractive properties, especially continuous attractor dynamics which is desir-
able for, e.g., generating smooth robot control commands, or for modeling the
dynamics of decision making|[7].

On the modeling side, response latency is the key idea behind the rank or-
der coding model[13,21] which posits that the precise timing of arriving spikes,
relative to stimulus onset, carries information about the relative importance
of the represented concepts. Some models[36] even consider the first arriv-
ing spikes at the exclusion of all others. Our findings are compatible with all
of these models, for although our investigation is based on rate-coded model
neurons, the key findings that certain inputs lead to quicker responses, and
that quicker responses dominate downstream processing (as demonstrated for
spiking networks in [33]), are at the core of this investigation.
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When considering the larger implications of how biological neurons might
compute and manipulate probabilistic information, there exists a large body
of literature[23,38,15,20,38,8,29]. There seems to be agreement that neural
populations represent more than just values; indeed, most authors explicitly
assume that neural population activity is related, in various proposed fash-
ions, to probability or "belief" distributions|23,38,20,8,29]. A very influential
idea posits that neural activity is related to log-probability[8,29,15], which is
attractive because the multiplication of populations activities (which is con-
sidered necessary for integration and Bayesian inference) then amounts to a
simple summation which neurons can do easily. However, other authors have
questioned the practicability of this scheme[23] as well as the basic assumption
that Bayesian inference is indeed implemented by multiplying the population
activities in a neuron-by-neuron fashion. To the first point, it is claimed in [23]
that hierarchical inference steps, i.e., using the result of one neural layer as
the basis for another one, require a re-encoding at each level which seems un-
feasible. To the second point, it is questioned|[23] that a sensory measurement
indeed constitutes a probability distribution in the usual sense. Instead the
authors claim that each neuron’s firing rate represents the realization of a ran-
dom variable governed by a Poisson-like probability distribution determined
by the match of afferent input with that neuron’s preferred stimulus. Thus,
the mean of each neuron’s activity is deterministic and governed by the degree
of match. According to [23], the fact that a neuron represents the realization
of a random variable, and not simply a discrete bin in a probability distribu-
tion, makes it questionable that multiplying neural activities is a statistically
sensible thing to do in any case.

On the other hand, there are models of population encoding and Bayesian
inference which do not use log-encoding[23,10,28,38] distributions, which have
to resort to more complicated schemes like attractor networks[10] or assump-
tions about noise distributions|23].

The presented work evidently does not use log-encoding for representing
and processing probabilistic information; we will discuss its similarities and
differences to related research in Sec. 4.

1.3 Research questions and article outline

The main point of this article is the construction of processing hierarchies
that take into account confidence for optimal decision making, see Fig. 1.
Working with very simple input stimuli to demonstrate essential mechanisms,
this article poses and answers three research questions:

Q1: Can recurrent dynamics encode decision confidence into re-
sponse latency? Here, we ask whether decision confidence, i.e., the degree
of match between an input stimulus to the data model encoded by the re-
current connections, can be unambiguously translated into response latency.
For successful encoding, we demand that the response latency should be a
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monotonous function of decision confidence. In other words: the less confident
the input, the greater the response latency.

Q2: Can recurrent dynamics decode response latency? For decoding,
we demand that the ability of arriving inputs to influence attractor formation is
a monotonously decreasing function of their latency. Put briefly: later-coming
inputs should be less likely to influence or win the competition process.

Q3: Can encoding and decoding steps be successfully coupled? Here,
we are interested in the fact whether two neural fields, one encoding and one
decoding decision confidence expressed as response latency, can be coupled
such that the resulting decision takes into account confidence differences cor-
rectly

These questions will be addressed by simulating the neural hierarchy de-
picted in Fig. 1 using the DNF model[1,34]. After a review of the employed
DNF model and its numerical simulation? in Sec. 2, we will more precisely
define the artificial input stimuli in Sec. 2.3 as well as the assumed data model
and its analytical formulation in Sec. 2.4. The experiments conducted in Sec. 3
correspond directly to the research questions raised here, and in Sec. 4 it will be
discussed to what extent the experimental results give answers to these ques-
tions. In Sec. 4, it will also be attempted to generalize the obtained results,
suggesting how recurrent networks can encode, and possibly learn, internal
data models. A critical discussion of the impact of this work on neural coding,
as well as a discussion of limitations and possible future work concludes the
article.

2 Methods

We base our investigation on the dynamic neural field model [1] which was
originally proposed to describe pattern formation in the visual cortex. Essen-
tially, dynamic neural fields are a class of recurrent neural network models
that have been extensively used for modeling cognitive phenomena like de-
cision making [6], motor planning [11], spatial cognition [18], eye movement
preparation [37,31] and object recognition [12,9]. Basic elements are simple
dynamic-state neurons, a fixed lateral connectivity, and a (usually sigmoid)
non-linearity.

2.1 Model equations

We use a slightly more general version of the original model in the sense that
afferent and lateral terms can be weighted differently using the coefficients

2 Python/C code implementing all simulations of this article is available under
www.gepperth.net/alexander
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a, B:
Tu(x,t) = —u(x,t) + aS(x,t)

+ ﬂ/w(x ) flul, ]dxt + o)+ B (1)

1
1+ exp(;ﬂu(l’f’t)*e))

Here, the quantity u(x,t) represents the membrane potential of the field at
time ¢ and position x, S(x,t) the afferent input, w(x — x/) the fixed lateral
interaction kernel, f[u] the non-linearity or transfer function, and o(x,t) nor-
mally distributed white noise. 7 determines the time scale of field evolution,
and h is the resting potential, i.e., the equilibrium potential in case of no
input. We choose a sigmoid transfer function, parametrized by a threshold
and a gain value: 0, v. The coefficients «, 5 and v respectively determine the
contribution of the afferent input, the lateral recurrent interactions and the
noise. The interaction kernel w(x — x/) is usually chosen to be symmetric:
w(x — x/) = a0Gp=0,0,, (X — x/) — boG=0,0,4 (X — X!) — ¢, Wwhere G =0 » (%)
denotes a Gaussian with mean p and standard deviation o, and oy, < oo
The constants ag, by, ¢ are chosen suitably to achieve the desired level of local
excitation/inhibition(ag, bo) as well as global inhibition (cy). To ensure numer-
ical stability, we clip the neural field potentials u(x,t) whenever they exceed
the range defined by [Umin, Umax]-

where flu(x,t)] =

2.2 Numerical simulation

For performing numerical computations, neural fields potentials are discretized
to a grid of N x N "neurons", denoted by 4(x, t). The lateral interaction filter
is discretized as well, having a width of 5o,g elements, while global inhibition is
obtained by summing all elements in the discretized field. Thus, for discretized
neural fields, the update equation reads

dx,t+1) = (1— 1) a(x, 1) + 2 x

T T

x [aS‘(X,t) +8 ) ay)f [“ ((f,:;) tﬂ !

lz'],ly’|<2.500a

(2)

+ Beo Z flux' )] +v6(x,t) +h

2.3 Used stimuli

As mentioned in Fig. 1, we will use synthetic input stimuli S = S(x,¢) in our
experiments in order not to complicate the demonstration of the desired effects
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by subtleties of real-world data processing. Stimuli S consist of two Gaussian
"bubbles", at two fixed positions, with equal variances (see, e.g., [34]), which
have peak values A;, A; € [0, 1]. We furthermore assume that S is a version of
the "true" underlying stimulus M which is corrupted by structured noise, and
that M contains only a single Gaussian at one of the two allowed locations. M
can therefore be described by two numbers M, My € {0,1}, M; + M> =1,
indicating the amplitude of Gaussians at each of the two locations. Example
stimuli S are shown in Fig. 2. For simplicity, we will often refer to a stimulus
where only one Gaussian is present as "left" or "right" depending on the
Gaussian’s location.

2.4 Implicit and explicit data model formulation

By the assumptions about the "true" stimulus M underlying a sensory mea-
surement S as indicated in the previous section, we implicitly define a data
model requiring a single localized activity peak of a certain size. This fits well
the perceptual decision making scenario of Fig.1 and is roughly realized by the
"default" lateral connectivity often used with DNFs, that is to say, Mexican
hat interaction kernels with added global inhibition. This data model gives im-
mediately rise to notions of stimulus confidence, leading to the simple concepts
of conflict/ambiguity or lack of evidence as illustrated in Fig. 2.

However, in order to theoretically verify the correctness decision making
using corrupted stimuli S using Bayesian inference techniques, we require an
explicit probabilistic model P(M]|S), relating S and M, the "true" underlying
stimulus. This amounts to specifying the probability of a certain M being
present given its corrupted measurement S. Such a data model is a highly
useful tool, if available, since it can be used for the following purposes:

— it defines sets of allowed or forbidden stimulus values stimulus values
MH M~ characterized by p(M|S) > OVM € M™ and p(M|S) = OVM €
M-

— it allows to estimate the most probable "true" stimulus M* given a cor-
rupted stimulus S as M* = argmaxy;p(M|S)

— it allows to assign a confidence ¢ = P(M*|S) to the most probable true
stimulus. It is this confidence that should be transmitted to a subsequent
hierarchy stage

In this article, we will consider only stimuli of a very simple nature, both
concerning M and S as outlined in Sec. 2.3. In line with our definitions of
ambiguity, conflict and lack of evidence as illustrated in Fig. 2, the data model
should have the following simple properties:

— punish ambiguity or conflict: Ideally, only one dominant Gaussian
should be present in the input. Confidence should decrease if the second
Gaussian has a nonzero peak value

— punish lack of evidence. Ideally, this single Gaussian should have a peak
value of 1.0. If it is lower, the confidence should decrease.
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Table 1 Parameters used in the simulation experiments

parameter  value function | parameter  value function
T 15 time constant Umin -2 min. field potential.
e’ 1 input strength Umax 3 max. field potential
B8 4 lat. int. strength 0 0.5 transfer func. thresh
0 0.005 noise strength v 2.5 transfer func. slope
h -1.0 resting potential Oon 6 inhibition radius
ap 1 on filter strength bo 3 off filter strength
co 0.10 global inhibition Oon 3 exc. radius
Ooff 6 inh. radius NxN 32 neurons

280 iterations/pattern

— punish lack of match. If the dominant Gaussian of the stimulus S is
different from the peak in M, probability should drop sharply

The precise form of the model is not important for decision making as long as
those properties are fulfilled. A simple choice of model is, for example:

AL = Ma| + [As — My

g

P(S|M) ~ exp ( ) with 0 = 0.2 (3)
By assuming that all stimuli M are equally probable a priori, P(M) = const.,
we obtain an a posteriori probability distribution representing the sought-for
data model:

PM]S) = P(S|M) (4)

When performing decision making experiments in Sec. 3, this model will be
used for verifying the correctness of the decisions. The fundamental assumption
of this article is that neural field layers with a correct choice of parameters
and lateral connections can approximate such a model by their dynamics. In
particular, we assume that the final converged state of each layer represents
the MAP estimate of this layer’s inputs, and that the response latency of this
converged state encodes its confidence under the data model.

The experiments of the following section will show that this is the case at
least for the simple stimuli used here.

3 Experiments

In all experiments, several input patterns (see Fig. 3) are presented to the
network(s) for T iterations, in which time the network dynamics are simulated
according to eqn. (2). Before each pattern presentation, all network potentials
were reset to the value of the resting potential h. Unless stated explicitly, we
use the parametrization indicated in Tab. 1 in all experiments of this section.
These parameters ensure that neural layers converge to single-peak solutions
and are thus in accordance with the analytical model of Sec. 2.4, see [26] for
a theoretical justification. The choice of good parameters for DNFs is slightly
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field

input

AA=0..1, At=0 A=0..1 AA=0, At=-20..50

Fig. 3 Variable input stimuli used in our experiments (lower row), leading to decisions
(upper row) of variable confidence expressed by response latency. A) Variation of con-
flict /ambiguity, modelled by the difference AA of the peak amplitudes of the left and right
Gaussian. B) Variation in the degrees of evidence, modelled by the peak amplitude A of
the single Gaussian stimulus C) Variation of relative latency At for a composed stimulus.
In this case, each of the Gaussians has the same amplitude A; = Az = 1, whereas their
relative latency is varied, thus giving each Gaussian a different influence on the dynamics
of the neural layer.

tricky, especially if we wish to observe latency effects. However we have good
reasons to believe that most of the parameters can in principle be determined
from data using self-adaptation processes as described, e.g., in [24]. There were
a few principles that we found useful in guiding our choice of parameters:

— No lateral interactions in the resting state: This implies that f(h) & 0, and
thus constraints on v and 6 are introduced

— Potential cut-off must not introduce new effects. This implies that f(umax) =~
1 and f(umin) = 0 which can be obtained by a proper setting of wmin, Umax-

— Lateral and afferent inputs to any neuron should be, on average, of similar
magnitude. This mainly constrains a, 5 and +.

3.1 Encoding ambiguity /conflict into response latency

In the first experiment, we will demonstrate that a proper parametrization
of neural layers can achieve an unambiguous translation of ambiguity /conflict
(see Fig. 2) into response latency. To show this, we will successively apply
stimuli of varying degrees of conflict/ambiguity to the neural layer and mea-
sure the response latency of the winning peak. Using input data according
to Sec. 2.3 and Fig. 3 A), we create two Gaussian stimuli with initial ampli-
tudes Ay = 1, As = 0, where the "true" solution is supposed to be "left", i.e.,
My =1, My = 0. In successive steps we increment the amplitude A, such that
the difference in amplitudes, AA, goes from its initial value of 1.0 to 0.0, which
always leads to a "left" solution except for AA = 0. Evidently, this variation
of As reduces the probability P(”left”|S) of the attractor solution under the
probabilistic model of. (3). As shown in Fig. 4 (left), we observe a monotonous
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response latency
response latency

120 =1

0 0.2 0.4 0.6 0.8 1 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
probability under data model probability under data model

Fig. 4 Encoding of decision confidence using single neural layers for input stimuli S with
different types of structured noise: "ambiguity/conflict" (left diagram) as well as "lack of
evidence" (right diagram). Peaks always develop on the "right" position in the encoding
field with an input-dependent latency, expressing the MAP estimate along with a decision
confidence. Both graphs show a monotonous relationship between response latency and the
probability under the analytical data model, P("right”|S), underlining the relatedness of
those quantities. For each measurement point in both graphs, the associated parameters of
the input stimulus are given as well: either the difference between conflicting peak amplitudes
AA, or the strength of the single peak A.

but nonlinear relationship between P(”left”|S) and response latency, showing
that the latter can indeed be used unambiguously to express the former.

3.2 Encoding lack of evidence into response latency

Similarly to the previous section, we create input stimuli according to Sec. 2.3
and Fig. 3B), although now with only one Gaussian "left" stimulus whose
amplitude A is varied from 1.0 to 0.9, thus reducing confidence of the attractor
solution P(”left”|S) computed using eqn. (3). The "true" stimulus is supposed
to be "left", i.e., My = 1, My = 0. As can be observed in Fig. 4 (right), thereis a
monotonous, almost linear relation between P(”left” |S) and response latency.
This result shows that what we called "lack of evidence" in Sec. 1 reduces the
confidence of decisions under the analytic data model, and that this confidence
is unambiguously represented by response latency.

The reason we keep the amplitude of the Gaussian in the range of [0.9,1.0]
is that the latencies grow excessively for A — 0.9, up to the point where
no activation is produced at all within T iterations for A < 0.9. While it
is straightforward to find neural layer parameters that allow the represen-
tation of A < 0.9, they are usually not compatible with the encoding of
uncertainty /ambiguity demonstrated in Sec. 3.1 when the full range of un-
certainty /ambiguity should be represented. This seems to be a constraint of
the recurrent networks model, see Sec. 4. As this article focuses more on the
representation of ambiguity/conflict, we demonstrate the encoding of "lack of
evidence" for completeness, but will not use it further in what follows.
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Fig. 5 Decoding response latency. The experiment considers a single neural layer receiving
an input composed of two equally strong Gaussian stimuli (denoted "left" and "right")
with relative latency At. Depending on the At, a peak forms either at the "left" or the
"right" position (green/red curves), with a latency depending on At which can be seen in
the diagram. For At = 0, no peak forms during the observation interval, corresponding to
the refusal to take an impossible decision.

response latency

3.3 Decoding response latency

After having shown that decision confidence is translated unambiguously into
response latency, we are now going to show that latency can be decoded to
influence decision-making in just the right way. For this purpose we will present
a neural layer with an input containing two Gaussians of equal peak amplitude
A; = As = 1, arriving with different latencies t1,t5. We assume the "true"
stimulus to reside at the location of the earlier-arriving Gaussian. This is
intended to emulate the situation where these two Gaussians come from two
separate neural layers faced with inputs of different confidence, see Fig. 3D).
As a two-peak input does not fit the implicit data model of the neural layer,
it is forced to take a decision, and we want to find out how this decision is
affected by the relative latency At.

As can be observed in fig. 5, we find that At has a strong influence on de-
cision making. Not only does the first-arriving Gaussian completely dominate
the layer’s response, but we also find that, as At decreases, response latency
increases monotonously. Both findings are intuitive in the sense of optimal
decision making: as the latency of inputs can be linked to the confidence of
the decisions that generated them (see Sec. 3.1), a good decision must be in
favour of the earlier (i.e., more confident) input. Likewise, if two inputs have
similar latencies (i.e., confidences), the confidence of the decision should be
lowered, which is expressed by in increase in latency. This supports the con-
struction of deeper hierarchies, since the decision of the decoding field has
itself a confidence that is again expressed as response latency.
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field D
>

input
-
.

1

\
S
field 1, /

field |

variable-con- - O fixed-con-
fidence input ¢ £ : fidence input

Fig. 6 Schematics of the three-stage hierarchy of recurrent neural layers used for the testing
of optimal decision making. The variable noise in the input to I1, and the fixed noise in the
input to Iz are translated into variable and fixed latencies of neural responses in I; and 2.
For simplicity, stimuli are chosen such that the "right" stimulus always wins the competition
in I1, whereas the "left" stimulus always wins in Iz. This leads to a competition between
those two positions in D, which decides between "left" and "right" based on the relative
latency of inputs from I and Is.

3.4 Optimal decision making in a hierarchy

After the preparations of the previous subsections, we are now ready to con-
struct a 3-stage hierarchy out of identical neural layers. The hierarchy is con-
structed as shown in Fig. 6, and all layers use the parameters of Tab. 1. Two
low-level layers, I1 and I, encode the confidence (which is varied for I7) of
their inputs into response latency, which is in turn decoded by the field D.

As we know that the implicit data model of neural fields, encoded into
their connectivity and dynamics, can approximate the analytical data model
of Sec. 2.4 as shown in Secs. 3.1, 3.2, 3.3, this experiment is meant to de-
termine whether a deeper hierarchy will respect the analytical data model
as well, amounting to optimal decision making behavior in D for arbitrary
decision confidences in I; and Is. Inputs to both I; and I> are of the "con-
flict /ambiguity" type illustrated in Fig. 3A): Whereas the confidence in I5 is
kept constant by using a constant difference between peak amplitudes AAs
= 0.6, the confidence in I; is varied by manipulating the amplitude difference
AA; in analogy to in Sec. 3.1.

To determine the optimal decision to be taken by D, we need to calculate
the a posteriori distribution P(M]|S;S2). Assuming independence of S; and
Ss, we can simply multiply and obtain

P(M[S:82) = P(M|S;)P(M]S2) (5)

To obtain a decision, we must compare the a posteriori probabilities P(”left”|S;S3),
P(7right”|S1S2). To this effect, we calculate the sign of the log-odds-difference
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Fig. 7 Optimal decision making in a three-stage hierarchy, see also Fig. 6 and text. Low-
level decisions decisions and their confidences, arising from a variable "ambiguity/conflict"
type of input (parametrized by AA, the difference between peak amplitudes) to the lower-
level field I, are decoded by the high-level field D to take a Bayes-optimal decision. Shown
is the temporal development of neural activities in D at the positions of the "right" (red
graphs) and "left" (green graphs) stimuli. The blue line indicates the theoretical log-odds-
difference which indicates the optimal decision ("left"/"right") by its sign. Left: coarse
resolution covering the complete range of AA. Right: finer resolution around the pivotal
point of AA = 0.6.

(LOD):

P(lef
sgn (LOD) = sgn <1og M)

P(right|Slsg)
= sgu (log P(left|S1S2) — log P(right|S1S2)) =
sgn(6 — 10AA;). (6)

Given the nature of the inputs Sy, Ss as depicted in Fig. 6, D should decide
"right" if sgn (LOD) = 1, it should not decide if this quantity is zero, and it
should decide "left" when it is —1. When viewing the results given in Fig. 7,
the decision behavior exhibited by D exactly matches the optimal decisions
indicated by the LOD calculation. We observe that, for AA; > AA,, the
"right" stimulus from I; wins the competition in D as it is more confident;
similarly, the "left" stimulus from I wins for AA; < AA; = 0.6. At AA; =
AA,, output in Iy and I> have equal confidence, reflected in a refusal of D to
take a decision (no significant activity develops either at the "left" or "right"
position).

3.5 Resolution of decision making in a hierarchy

As neural responses are usually quite noisy, this will obviously affect a neu-
ral code using response latency. We therefore wish to know how the (weak)
noise we simulate in our neural layers affects decision making when taking
near-ambiguous decisions. As shown in Fig. 7 (right), decision making is still
optimal in cases where amplitude differences in I; and I do not get too sim-
ilar. An exception are cases where amplitude differences are within 0.02 of
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each other (e.g., case D) in Fig. 7) (right): here the resolution of response la-
tency is apparently insufficient to encode and decode confidence with sufficient
precision. For these borderline cases, the behavior of D has a strong random
component, that is to say, the decision taken by D depends on the precise
form and the initial conditions of the noise.

4 Discussion

In this section, we will first review the results that were obtained, then point
out and discuss topics that merit special attention, as well as list shortcomings
and limitations of our work. As a last point, we will try to generalize the
findings of this article, and conclude with an outlook of future work.

4.1 Summary

We presented experiments that perform statistically optimal decision mak-
ing in a 3-layer hierarchy of recurrent neural layers, implemented as dynamic
neural fields. It was shown that, as a consequence of the non-linear recurrent
dynamics in each layer, conflict /ambiguity or lack of evidence in input stimuli
can be unambiguously encoded as response latency of attractor states. Simi-
larly, response latency can be decoded by subsequent hierarchy stages, taking
into account the confidence of lower-level decisions. Finally, it was verified by
comparison to an exact probabilistic model that a hierarchy of neural fields can
indeed take Bayes-optimal decisions by exploiting the information contained
in response latency, and that this ability is robust to moderate noise levels.

4.2 Particular points

Parametrization All of the aforementioned functions were realized by finding
appropriate parametrizations for the DNF model, not by making changes to
the model itself. It is important to note that the encoding and decoding of la-
tency are inherent in the neural dynamics when correct parameters are chosen.
Clearly, the parameters of different neural layers in a hierarchy need not be
identical; however it is imperative that the chosen parameters allow each neu-
ral layer to encode and decode latency within the simulation time for a single
stimulus, T'. Fortunately, using the guidelines for parametrization mentioned
in Sec. 3, we were able to find a single set of parameters appropriate for all
hierarchy layers. That encoding and decoding can be performed with the same
parameter settings is not self-evident, but we found, in the course of numerous
experiments, that parameters allowing encoding were almost always suited for
decoding as well. Since the process of finding the required parameter values
is not straightforward at all, we believe self-adaptation processes[35,24] must
be applied to automate the process of adapting parameters to data statistics.
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Since latency encoding and decoding were found to work for any parametriza-
tion where input stimuli could create an attractor in less that 7T iterations,
self-adaptation processes would just have to ensure that this condition is met,
e.g., by maintaining temporal averages of neural activations over single pat-
tern presentation (7" iterations) at some target value. If no activations appear
within T iterations, such averages would be too low, while they would be too
high if neurons were constantly active over the whole period [0, T].

Representation of probability In the presented study, we effectively assume
that recurrent neural dynamics approximate a probabilistic data model P(M|S)
for the "true" values of input variable M given the afferent inputs S which
are afflicted by (structured) noise. At least for simple stimuli, we have shown
that our recurrent network approach represents both the MAP estimate M* =
arg maxP(M|S) (represented by the position of the localized attractor solu-
tion), as well as a nonlinear transformation of P(M*|S) itself (represented by
response latency). As can be seen from the results of Sec. 3.1, this encoding
of the decision confidence P(M*|S) is one-to-one but non-linear, so that re-
sponse latency does not directly represent a probability here. This is however
not required to take correct decisions: as all we need to do is to compare laten-
cies in different areas of the input while assuming they were generated using
the same underlying data model. In this study, the model P(M]|S) is effec-
tively unimodal because a single Gaussian is assigned the highest a posteriori
probability. This is reflected in the lateral connectivity of the used networks
which locally favors Gaussian activation peaks but restricts their number to
one due to global inhibition. There is however nothing whatsoever to keep us
from implementing or learning other, more general data models by adapting
the lateral connectivity structure of recurrent networks.

Comparison to related work When considering the representation of probabil-
ity we discussed in the last paragraph, several important differences to related
work are notable: First of all, and different from [15,29,8], our approach does
not treat neural activities as log-probabilities. More generally, and in line with
[23], we do not treat the set of input activations S as a probability distri-
bution but as a collection of physical measurements corrupted by noise. In
contrast to [23], however, we do not require this noise to have a particular
form as long we can represent it in our internal data model P(M]|S), encoded
in the lateral connections of each layer. A further difference to [23], who con-
sider Bayesian integration separately for each neuron, is that we consider data
models that are global in the sense that they consider the values of other, not
necessarily adjacent neurons in the computation of the a posteriori probability.
Summarizing, this article suggests a new way of approximately representing
and processing probabilistic information in neural hierarchies which is quite
different from what has been proposed in previous works, although it has been
validated only for very simple stimuli. To be fair, on the other hand, most
previous work on the subject uses test stimuli of similar simplicity with the
possible exception of [29].
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4.3 Limitations

Noise In the simulations of Sec. 3, noise was kept at an intermediate level,
and we could show that the "resolution" for stimuli whose confidence was sim-
ilar was in fact quite good, see Sec. 3.5. Experiments conducted with higher
levels of noise show that stimuli of similar confidence can interchange their
temporal order as a consequence of noise. To react to this loss of resolution,
the parameters of neural layers must be adapted such that the range of confi-
dences that can be represented is narrowed, giving more resolution to the high
confidences and dropping the lower ones. At the same time, the mechanisms
underlying attractor formation could be revisited and adapted, thus making
them less susceptible to noise. Clearly, the behavior of our approach under
stronger noise merits further attention.

Can every probabilistic model be approzimated? In the analysis of the experi-
ment of Sec. 3.2, it was mentioned that we were unable to find a set of param-
eters for which the neural layers could represent the full range of confidences
arising from either lack of evidence and ambiguity/conflict. Maybe such pa-
rameters exist, but we believe it is more likely that not every conceivable model
may be approximated faithfully by recurrent neural dynamics. What can be
done, however, is to restrict the range of represented confidences both for con-
flict /ambiguity and lack of evidence to a point where both can be represented
faithfully, at the cost of not representing some of the less confident patterns.
We do not consider this to be a significant problem since only the least con-
fident inputs would have to be disregarded (who would not win subsequent
competitions in any case). Nevertheless it will be worth investigating whether,
and how, the greatest possible set of sensible data models can be approximated
by recurrent dynamics.

Loss of information in deeper hierarchies The basic creed of Bayesian data
processing[4] is to always transmit and manipulate distributions, and to take
the final decisions only at the end of a processing chain by choosing the argmax
of the final distribution. This is clearly a very intelligent strategy since no
information is lost on the way through, e.g., a decision hierarchy. Thus, if
apparently irrelevant alternatives are not already disregarded at low hierarchy
stages, they might still change the final decision when integrated at higher
stages. The presented study outlines a possible way towards this goal, for
although competing stimuli do get suppressed at the lowest hierarchy stages,
see Sec. 3.4, at least the fact that something significant was suppressed is
transmitted as confidence, and taken into account at the next stage. What is
more, with another data model that allows for several localized stimuli in the
input, alternatives could be transmitted through the hierarchy. Nevertheless,
each hierarchy stage potentially suppresses information using its data model,
and thus the full "Bayesian dream" is not yet realized by our approach. It can
(and should) of course be debated whether a full Bayesian treatment is really
required for robust real-world processing, or whether the chosen approximation
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will already be feasible or even beneficial, as transporting the full probabilistic
information might be strongly susceptible to noise as well.

Generality The results presented here were obtained using the dynamic neural
field model as a basis for simulation, so we wish to discuss how our results will
generalize to other recurrent network models, especially spiking ones. This
of course depends to a great extent on the precise form of the used model
equations, but at least for spiking models using an integrate-and-fire type
of update equation we can be reasonably sure that our findings will hold
true. As response latency is due to delayed build-up of membrane potential
(caused by lateral inhibition), and since the basic update equation for the
membrane potential in integrate-and-fire models is identical to eqn. (1) except
for spike generation and reception, the same mechanism should apply, although
of course with different parameters. This assumption is supported by reports
of response latency in [33] with integrate-and-fire models.

5 Outlook and future work

As we already mentioned the previous section, it is for the most part the lat-
eral connection weights of a recurrent neural layer that encode the data model
P(M]|S). In the present study, this model was very naive in just admitting
a single Gaussian activity peak as an attractor solution which we assume to
represent the MAP estimate M* = arg maxP(M]|S). The advantage of us-
ing a neural network is that lateral connection weights, and thus an internal
data model, could be learned from data statistics by simple correlation-based
rules. On the minus side, this would require giving up the notion of a location-
independent convolution kernel in eqn.(1), resulting in much higher memory
consumption. Nevertheless, this would allow to model real-world inputs com-
ing, e.g., from a visual sensor, and to use the internal data model to detect
deviations from the ordinary for more robust processing. This will be especially
relevant for our work on autonomous and self-organized learning in real-world
scenarios (see, e.g., [14]), where it must be determined whether complex new
representations of visual stimuli are out of the ordinary, and should thus trig-
ger learning. The detail of such a combined learning process will certainly be
the subject of future work, as well as the question of how to self-adapt the
other parameters of a recurrent network to best match the data statistics.
Furthermore, the influence of noise on the latency code will have to be in-
vestigated with the goal of allowing optimal decision making even in the face
of strong noise. All these efforts will lead to a better understanding of how
the human brain processes probabilistic information, with the aim of creating
more robust intelligent systems operating under real-world conditions.
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