
Implementation and evaluation of a large-scale

object detection system

A.Gepperth

November 17, 2010

Abstract

In this report, we give detailed information about implementation and
evaluation efforts that were undertaken w.r.t. the system described in
[1]. Particular emphasis is given to system-level learning of contextual
dependencies, and in particular to the computation of visual features used
by the employed learning algorithms. Another important issue treated
here concerns the evaluation of the system: we give details about the
evaluation procedures and the HRI RoadTraffic dataset which is the basis
of the evaluation efforts. As a last point, we compare the HRI RoadTraffic
dataset to other publicly available, annotated datasets for road traffic and
present arguments why the HRI RoadTraffic dataset constitutes a suitable
reference dataset for future benchmarking efforts.

1 System overview

The system described in [1] is shown in Fig. 1. It is a hybrid system composed
from elements implementing neural as well as conventional image processing
techniques. This section will review all relevant elements of the system, where
emphasis is placed on the interfacing of elements rather than on implementation
details which are described either in the appendices or in dedicated publications.
Furthermore, we will give details about experimental procedures that were used
to generate the results of [1]. Relevant parameter values of algorithms described
in this report are given in 2. The presented system (see Figs. 2 for a detailed
sketch) is of significant complexity and consists of approximately 8000 functional
components. The system receives inputs obtained from a stereo camera, the
vehicle-internal CAN bus and two laser range-finding sensors; it generates a
list of entities that are judged to be relevant, i.e., cars and vehicles. Since the
currently achieved execution speed is not sufficient for live operation, the system
is not yet running in a vehicle. Rather, it receives its inputs by a timestep-based
replay of recorded data, which is exactly equivalent to the way data would be
received in our prototype vehicle.

Since the system is not operating on ”live” data, it is possible to replay an-
notations (e.g., positions and identities of other traffic participants) as ”virtual

1

Figure 1: Illustration of the basic structure and the inherent novel points of the
system presented in [1]. 1) Learning of system-level models for generating atten-
tional modulation during system operation 2) Learning of multimodal models for
attentional modulation. What kinds of models are learned effectively depends
only on the processing results that are supplied to the system-level learning
mechanism.

.

sensors”, that is, as if they were obtained from measurements. This is useful
for the training of system-level models (see [1]), although it is for convenience
only because we will show that bootstrapping, i.e., model training without using
annotated data, is possible and feasible (see [1]).

1.1 Interfacing of system components by population cod-

ing

Population coding is a biologically inspired way of encoding information. Basic
properties of all population coding models[2, 3, 4] are, one the one hand, the
representation of information on two-dimensional surfaces in analogy to cortical
surfaces, and on the other hand, the concept of storing confidence distributions

2

Figure 2: Global structure of the described hierarchical object detection sys-
tem. Functional modules are object detection (A,B), stereo processing (C),
free-area computation (D), competitive hypothesis selection (E) and popula-
tion encoding (F). Attentional modulation is trained at the system-level (G),
linking hypothesis identity to elevation, distance, distance-to-free-area and 2D
image position (F). System-level training happens in a supervised way using
”true” object identities supplied by ground-truth data. Given an arbitrary de-
sired object identity (the search cue), attentional modulation is applied to the
hypothesis level of object detection, thus favoring the detection of objects of
the desired identity. Data flows from symmetry detection (A) to other modules
are identical to data flow from the appearance-based classifier (B) but are not
shown for clarity. For comparison, we also implemented a ”late rejection” mod-
ule at system level (H) which uses a multilayer perceptron for directly (without
influencing lower system levels) mapping population-coded quantities produced
at the hypothesis level to an object identity decision.

3

Figure 3: Transfer of different types of measurements to population codes. The
particular type of measurement determines how it is translated into a population
code. A) a discrete distribution from, e.g., an object classifier, is translated into
a population code where only certain locations carry information. B),C) Quasi-
continuous one-dimensional measurements (e.g., object elevation and distance)
are encoded into population codes that are extended along one axis. Note that
the uncertainty (multimodality) of measured distributions is transferred to the
resulting population code. The precise way of encoding is determined on a
case-by-case basis.

for all represented quantities.
Mathematically, a population code is therefore a collection of one or several

two-dimensional lattices, where each lattice point (”neuron”) stores a normal-
ized confidence value corresponding to the belief that a certain property (”pre-
ferred stimulus”) associated with this lattice point is present in the encoded
information. These properties link population coding closely to the Bayesian
approach to probability[5]. In particular, population coding represents encoded
quantities as distributions over possible values, thus implicitly storing the asso-
ciated uncertainty in accordance with the ”Bayesian brain” hypothesis[6].

In order to be able to link system-level information by learning methods as
described in [1], we convert such quantities into population codes. The system-
level quantities we want to encode are confidence distributions which may be
either one- or two-dimensional which we denote source distributions. The nature
of source distributions may be discrete (i.e., having nonzero confidence values
only at certain positions) or continuous as well as graded (with confidences
assuming values in a range between 0.0 and 1.0) or binary. Examples of dif-
ferent kinds of source distributions and their population encoding are shown in
Figs. 3 and 8. We employ the convolution coding technique [2] which essentially
performs a convolution of the source distribution with a kernel of fixed size, in
our case a Gaussian. In case a source distribution is one-dimensional, we embed
it into a two-dimensional distribution along a specified axis before performing
convolution coding.

The conversion of system-level quantities into population codes is not uniquely
determined; we employ the freedom this gives us to make the encoding proce-
dure as simple as possible. The quantities which are transferred to population

4

Figure 4: Selected example images from streams I-V of the HRI RoadTraffic
dataset. All videos were taken in RGB color using a MatrixVision mvBlueFox
camera at a resolution of 800x600. Used frame rates were 10Hz except for video
II where a setting of 20Hz was used. Aperture was always set to 4.0 except for
video IV where we used a value of 2.4. A self-implemented exposure control
was used on both cameras, manipulating the gain and exposure settings of each
camera.

codes are properties of object hypotheses generated by the system: elevation,
distance, distance-to-free-area and retinal position/size as described in Secs. 5,
7 and 8.

2 The HRI RoadTraffic dataset

For evaluation of object detection systems such as [1], we created the HRI Road-
Traffic benchmark dataset. It consists of five distinct video streams recorded
from a vehicle during a significant range of traffic, environment and weather
conditions. All videos are around 15 minutes in length and were taken dur-
ing test drives along a fixed route covering mainly inner-city areas, along with
short times of highway driving. Relevant occuring objects are mainly vehicles
of all types as well as traffic signs and static road elements (signal boards etc.).
Please see Tab. 1 for details and Fig. 4 for a visual impression. For the quantita-
tive evaluation of object detection performance, relevant objects are annotated
in every tenth image of the recorded video streams, please refer to Sec. 9 for
details. Additionally, processing results of the free area computation used in
[1] (see Sec. 5) are included so that researchers can more easily reproduce our
results. Quantities of general interest in image processing, such as the current
speed and yaw rate, are also available. This dataset can be obtained by email
request from the authors of [1]. Details about the content of the dataset are
given in Sec. 12.

5

ID weather daytime single images annotated images
I overcast,dry afternoon 9843 957
II low sun, dry late afternoon 22600 949
III heavy rain afternoon 6725 643
IV dry midnight 6826 464
V after heavy snow afternoon 16551 867

Table 1: Details about the video streams in the HRI RoadTraffic dataset. Please
note that streams II and V were recorded at a frame rate of 20Hz.

3 Multiscale processing by appearance-based clas-

sifier

Cars are detected at 16 different scales. These scales cover cars with a width
between 35 and 442 pixels on a 800x600 input resolution. The smallest 6 scales
are realized by learning differently sized SLP (single-layer perceptron) templates
and using them on the original scene resolution. In this way, for distant cars the
full pixel information could be exploited. For detecting nearer cars, the largest
template is applied to an image resolution pyramid using a sample factor of
0.878. This is computationally more efficient than a further increase of the
template size and also avoids over-fitting. Using this scale setup we can in
principle detect cars in a distance range of 4 to 60 meters.

4 Training of appearance-based classifier

For the training of car templates at 6 scales (see previous section), we use an-
notations from the day streams I-III from the HRI RoadTraffic dataset. Each
stream is divided into chunks of 30 seconds, where all chunks with odd index
are used to obtain training data from annotations (see Sec. ??) whereas the
remaining chunks provide test data. For generating positive training exam-
ples, all fully visible (not occluded) cars are cropped from the training scenes.
Training is performed separately for each of the 16 used scales using positive
examples of at least the size required at a certain scale. Larger segments are
down-scaled to the desired resolution, smaller segments are neglected. In this
way, more positive examples can be used for the training of classifiers at smaller
scales. Negative examples are generated by randomly selecting image regions
not containing cars.

5 Free-area and distance-to-free-area

For computing the binary free area image F̃ free-area(~x) ≡ F̃ 0(~x), we employ a
hybrid approach based both on visual processing and laser-range finder devices.
Detailed descriptions of the employed algorithms can be found in [7]. The
feature map relevant to the operation of the described system is the retinotopic

6

Figure 5: Performance example of free-area and distance-to-free-area compu-
tation for two object hypotheses. A) Embedding into processing system B)
Video image C) computed free area F̃ 1(~x) D) pixelwise distance-to-free area
map F 1(~x). Each pixel value in the map is determined by that pixel’s minimal
distance to a computed free-area pixel. Due to computational reasons, an upper
limit dmax is imposed. Note that distances are negative for pixels on the free
area. E) Population codes obtained for two different object hypotheses. The
encoded value is represented by a Gaussian of fixed variance whose center posi-
tion varies along the x-coordinate depending on the distance-to-free-area of the
center pixel of the object hypothesis. The y-coordinate of the center position is
kept constant at y = 10.

distance-to-free-area representation F 0(~x). It is computed as follows:

F 0(~x) =

{

min~x′, F̃ 0(~x′) 6=0d(~x, ~x′) F̃ 0(~x) = 0

−min~x′, F̃ 0(~x′)=0d(~x, ~x′) F̃ 0(~x) 6= 0

For a hypothesis with center pixel ~xc, the population-coded representation
of distance-to-free-area, f0(~p) is computed at the hypothesis level of the system
as

~pc =

[

min(F 0(~xc), dmax)

dmax
n, 10

]T

f0(~p) = exp
(~p − ~pc)

2

2σ2
(1)

Please view Fig. 5 for examples of free-area computation and the transfer of the
corresponding distance-to-free-area measurement to population codes.

6 Symmetry-based object detection

Confidence maps are generated by finding regions in the image I that are sym-
metrical along the vertical axis. In real-world images, only parts of the image

7

Figure 6: Performance example of symmetry-based object detection. A) Em-
bedding into processing system. B) Input image and generated multi-scale
confidence map. A total of K = 8 scales is used for symmetry, corresponding to
filters of pixel height h = 3 and half-width w

2 = 5, 9, 13, 18, 25, 35, 49, 69. Shown
are confidence maps corresponding to filter widths 5,25 and 69.

are symmetrical, so we define a local measure Li,l(~x) for a window around a
pixel at ~x at spatial scale determined by i, l. By considering a fixed y-window
defined by l = 1, Li,l(~x) effectively becomes Li(~x), i = 0, . . . , K − 1 where K
denotes the number of spatial scales:

L2
i (~x) =

∑

k∈[−i,...,i]

∑

j∈[−1,...,1]

‖ I(~x − k~ex − j~ey) − I(~x + k~ex − j~ey) ‖2 . (2)

Small values of this measure denote symmetrical regions, large values denote
asymmetrical regions. However, when looking closer at Eqn. 2 it becomes clear
that large homogeneous parts of the image (e.g. the sky) always result in small
values for Li in all windows. As homogeneous regions usually do not contain
objects, we want to inhibit those regions using the variance σ2

i in the local
patches as a structure measure

σ2
i (~x) =

∑

k∈[−i,...,i]

∑

j∈[−1,...,1] [I(~x − k~ex − j~ey) − µk(~x)]2

(2i + 1)(2l + 1)
(3)

with

µi(~x) =

∑

k∈[−i,...,i]

∑

j∈[−1,...,1] I(~x − k~ex − j~ey)

(2i + 1)(2l + 1)
. (4)

Given a window size i defining the spatial scale of symmetry calculation, a
confidence map Si(~x) is calculated from Eqn. 2 and Eqn. 3 as follows:

Si(~x) = e−
1

2σ2
L2

i
(~x) · σ2

i (~x) . (5)

Figure 6 shows an example of the multiscale confidence map for a given input
image.

8

7 Distance and elevation computation

We employ a parametric plane estimation technique[8] to determine the position
of the ground plane in car-centered coordinates, and then in a subsequent step
the distance of all valid stereo pixels to that plane. This results in the retinotopic
elevation representation F elevation(~x) ≡ F 1(~x).

Given such a retinotopic elevation representation and an object hypothesis
with center ~xc and width and height w, h, we can, at the hypothesis level,
compute a population-coded system-level quantity in several steps. First of all,
a sub-region of the hypothesis is defined by shrinking the original hypothesis to
70% of its width and height. Then, a normalized histogram h(e) containing Z
bins is computed, spanning elevation values e from emin = −3m to emax = 20m.
Finally, the histogram is transferred to a population-coded representation by
creating a Gaussian with peak value h(e) at a unique position for each histogram

Figure 7: Examples of stereo processing for elevation calculation. A) embed-
ding into processing system B) video image with object hypothesis C) dense
elevation map F 1(~x). D) population code f1(~p) resulting from this measure-
ment. Depending on the distribution of elevation values, such population codes
will be more or less strongly multimodal, thus reflecting the uncertainty of the
associated measurement.

9

Figure 8: Population encoding of hypothesis position and size. A) Embedding
into processing system. B) Performance example of size-dependent position
encoding into a pyramid of population codes. Given a hypothesis as shown in
the video image, a Gaussian of fixed variance is created at the pyramid level
corresponding to the hypothesis’ size at the center position of the hypothesis.
Larger hypotheses would be represented by population codes at different pyra-
mid levels.

bin e. The whole transformation sequence is given by

ROI = {~x|~x ∈ [~xc ±
0.7w

2
~ex ± 0.7h

2
~ey]}

∆ =
emax − emin

Z

h̃(e) =
∑

~x∈ROI

χe(F
2(~x) where χe(x ∈ [e, e + ∆]) = 1, χe(x /∈ [e, e + ∆]) = 0

h(e) =
h(e)

∑

e h̃(e)
, e = i∆, i ∈ [0, Z − 1]

f1(~p) =
∑

e

exp−
(~x − (e−emin

emax

n, 10)T)2

2σ2
(6)

Please see Fig. 7 for an example of the transfer of elevation measurements
to population codes. An identical procedure is used to compute the population-
coded distance representation f2(~p) using the retinotopic distance map F 2(~x)
and an object hypothesis with center ~xc and width and height w, h.

8 Position- and size-related analysis

At hypothesis level (see Fig. 2), we encode the pixel coordinates of the hypothesis
center, ~xc and its pixel size s in a multiscale population code f3

i (~p), i = 0, . . . , K
where K is equal to the number of pyramid levels produced by the appearance-
based classifier (see Sec. 3). Hypothesis size s is calculated as a function of

10

Figure 9: Example of single-image performance evaluation. A) Hypothesis
matching an annotation (true positive case) B) hypothesis not matching any
annotation in the current image (false positive case) C) annotation matched by
one or more hypotheses D) annotation not matched by any hypothesis (false
negative case) E) annotation that is not considered due to size constraints (vol-
untary annotation), see text. Such annotations do not constitute a false negative
case when matched by a hypothesis, but neither a true positive case otherwise.
Note that non-cars are not annotated because this would require knowledge
about the match measure and the kinds of hypotheses produced by our system,
which cannot/should not be known at annotation time.

hypothesis width w and height h and quantized to K bins. Subsequently, the
population-coded representation of hypothesis position, pos(~x) is calculated as
depicted in Fig. 3 and inserted into the resulting multiscale population code at
index s. In detail, this reads:

s = quantizeK

√
w ∗ h

pos(~x) = exp− (~x − ~xc)
2

2σ2

f3
i (~x) =

{

pos(~x) i = s

0 otherwise
(7)

A visualization of this process is given in Fig. 8.

9 Evaluation measures for object detection

Annotations for evaluation For study presented in [1], only annotations
containing vehicles are considered. As visualized in Fig. 10, for an image i ∈
[0, I − 1] in a video sequence, a single annotation ak, k = 0, . . . , Ai − 1 is
comprised of a rectangular area aROI

j described as a set of points, an identity

aid
k ∈ {0, 1} and an occlusion value aocc

k ∈ [0, 1]. The latter figure indicates the

11

Figure 10: Examples of recorded streams and annotated information. Anno-
tated objects are mainly vehicles and static traffic-relevant scene elements such
as traffic signs, signal boards and the free/drivable road area. Each annotation
consists of a polygonal area (always rectangular in the case of vehicles), an iden-
tity and an occlusion value (not shown). In order to reduce the annotation effort,
only every tenth image in a video sequence was annotated. Care was taken to
guarantee the annotation of all vehicles where annotations were performed. As
can be seen from the images, we use what we term semantic annotations, which
means that is has been tried to mark the whole area containing an object even
if it is partially occluded.

percentage of the object that can not be seen. Both the rectangular area and
the occlusion value can be used to filter annotations as described in [1].

Evaluation measures The evaluations in [1, 9] are always based on single-
image measures averaged over the whole of a video sequence. A fundamental
issue is the concept of match: for image i in a video sequence, we say that
a hypothesis hj , j = 0, . . . , Hi − 1 <= H − 1, defined by a center pixel ac

k

and a width/height a
w/h
k , matches an annotation ak, k = 0, . . . , Ai − 1 if the

center pixel is contained in the area defined by the annotation. We consider
a hypothesis to be false positive if it does not match any annotation in the
current image. Conversely, we consider the absence of a hypothesis a false
negative if there is an annotation which is not matched by any hypothesis. For
each image i ∈ [0, I−1], we compute the number of false positive hypotheses and
false negative annotations (see Fig. 9), denoting them by fpii, fnii. Furthermore
denoting the total number of annotations in the video sequence by Np, we obtain
two quality measures denoted false positives per image (fppi) and recall.

12

match(hj , ak) =

{

1 hc
j ∈ aROI

k

0 otherwise

fp(hj) = 1.0 −H(
∑

k

match(hj , ak))

fn(ak) = 1.0 −H(
∑

j

match(hj , ak))

where H denotes the Heaviside function which is defined by H(x ≤ 0) ≡
0, H(x > 0) ≡ 1. Finally, we have

fpii =
∑

j

fp(hj), fnii =
∑

k

fn(ak)

fppi =
1

I

∑

i

fpii, recall = 1 − 1
∑

i Ai

∑

i

fnii.

The reason we compute the measure fppi, the averaged number of false positives
per image, instead of the more conventional false positive rate is which is defined
as the total number of false positive detections divided by the total number of
non-car objects, is simple: in contrast to the total number of true positives
(e.g., annotated cars), the total number of non-car objects in a video stream is
not a reliable or fixed quantity; it depends on many factors such as the used
match measure, the used object detection mechanism a.s.o. In the interest of
presenting an objective evaluation, we therefore use the fppi measure which does
not require the total number of non-car objects for its definition (see also [10]
for a justification of the fppi measure).

For a fixed parameterization of the system, the performance is given by
a point in a recall/fppi-diagram. By plotting these two quantities against
each other for variations of the detection thresholds θclass or θsymm, we ob-
tain plots similar in interpretation to receiver-operator-characteristics (ROCs).
Such ROC-like plots will be used for visualizing object detection performance
in [1].

For performance evaluation in [1, 9], we only consider annotations whose
associated occlusion value is less than 80%.

10 Implementation details

The constituent parts of the presented system are implemented mainly in C;
some non-time critical parts are implemented in Python. We use the component-
based RTBOS middleware [11] to interface the various system parts in an un-
complicated, visual manner, while making use of the parallelization abilities of
present-day computer hardware. The system is running on a single high-end
workstation with multiple cores running Linux at a frame rate of 0.3 fps.

13

Table 2: Global parameters used for experiments
Parameter explanation value

H max. Nr of Hypotheses 40 or 10 (Sec. 9)
N,M image/feature map size 400,300 [1]
n,m population code size 64,64 [1]
σ peak width for pop. encoding 4 (Sec. 1.1)

θclass classifier selection threshold 0.0 for eval.[1]
θsymm symmetry selection threshold 0.0 for eval.[1]
θMLP symmetry selection threshold 0.0 for eval. [1]

ǫ system-level learning rate 0.00002 or 0.0001 [1]
emin min. elevation value -3.0m (Sec. 7
emax max. elevation value 20m (Sec. 7)
dmin max. dist-2-free-area value 70 (see Sec. 5)
Z hist. bins for pop.encoding 100 (Sec. 1.1)
K nr of pyramid scales 16 (classifier, Sec. 3) or 8 (symmetry, Sec. 6)

nblocking blocking interval 30s [1]

11 Comparison of the HRI RoadTraffic dataset

to other benchmark datasets

There exists, by now, a number of annotated vehicle datasets which are often
used for benchmarking the performance of object detection systems in a compa-
rable way. For traffic related areas of interest, the most notable datasets are the
CBCL StreetScenes Database (see, e.g., [12]) and the UIUC Image Database for
Car Detection[13]. Another popular benchmark are the datasets of the yearly
PASCAL object detection challenges, which also contain traffic objects but are
not restricted to them.

In contrast to the HRI RoadTraffic dataset described here, these datasets
consist of monocular still images instead of continuous stereo video. Apart
from the usefulness of stereo information, we believe that the possibilities of
processing continuous video streams are manifold, since, object detection could
be supported by, e.g., tracking algorithms. In addition, the number of annotated
images is significantly larger in the HRI RoadTrafic dataset; furthermore, our
annotations include information about object occlusion which not contained in
the other described datasets. Finally, the HRI road traffic dataset contains
(for each image) additional information, such as the results of the free-area
computation described in Sec. 5, as well as speed/yaw rate information.

Going beyond the area of vehicle detection, there exists an important dataset
containing pedestrian annotations which is comparable to HRI RoadTraffic:
the Daimler pedestrian detection benchmark dataset[14]. It contains a very
large number of cropped pedestrian images for classifier training, and a fully
annotated sequence of 2̃7 minutes of driving for evaluation purposes. The image
resolution is 640x480 recorded with a monocular grayscale camera. Additional
data such as free-area and speed/yaw rate information are not included; however

14

the total number of annotated objects is larger than in the HRI RoadTraffic
dataset.

12 Technical description of the HRI RoadTraffic

dataset

The HRI RoadTraffic dataset comes in 5 directories, one for each stream. In
each directory, there are the following entires:

leftImages This subdirectory contains numbered images from the left camera.
The images are actually grayscale but in Bayer format. They can be demosaiced
with any standard image processing toolbox to obtain RGB color images.

rightImages This subdirectory contains numbered images from the right cam-
era. They are identical in nature to the left camera images described in the
previous paragraph.

annotations This subdirectory contains XML files that can be read with the
Matlab toolbox1 provided by the LabelMe project[15]. This toolbox also allows
to access the occlusion value defined for each annotation. XML files can be
linked to camera images via their numbers.

freeArea This subdirectory contains numbered binary PNG images (either 0
or 255) indicating the free area computed from the corresponding left camera
image. Each binary image can be linked to images via its number.

proprioception This subdirectory contains a single text file, each line of
which contains a timestep, current yaw rate (in degrees/s), current steering
wheel angle (in degrees) and current speed in km/h. The correspondence with
camera images has to be established via the timestep information.

parameters Thus subdirectory contains a single text file with the camera
calibration parameters used for all recordings. They are stored human-readable
format using the common conventions for camera parameters.

timesteps???.txt A text file containing one row per image. The first column
gives the image index, the second index gives the timestep of the image having
that index.

Files in the subdirectories leftImages, rightImages, annotations and freeArea
have a unique consecutive number which is used to link images to each other
through different subdirectories. Indices can be mapped to physical timesteps
by evaluation if the timesteps text file in each directory. Proprioceptive data

1labelme.csail.mit.edu/LabelMeToolbox/index.html

15

were recorded independently at different frequency. They can be matched to
image data with the knowledge that 1 second corresponds to 32000 timesteps.

References

[1] A Gepperth, S Hasler, S Rebhan, and J Fritsch. Biased competition in
visual processing hierarchies: a learning approach using multiple cues. Cog-
nitive Computation, 2010.

[2] A Pouget, P Dayan, and RS Zemel. Inference and computation with pop-
ulation codes. Annu Rev Neurosci, 26:381–410, 2003.

[3] W. Erlhagen, A. Bastian, D. Jancke, A. Riehle, and G. Schner. The dis-
tribution of neuronal population activation (dpa) as a tool to study in-
teraction and integration in cortical representations. J Neurosci Methods,
94(1):53–66, Dec 1999.

[4] RS Zemel, P Dayan, and A Pouget. Probabilistic interpretation of popula-
tion codes. Neural Comput, 10(2):403–430, Feb 1998.

[5] CM Bishop. Pattern recognition and machine learning. Springer-Verlag,
New York, 2006.

[6] DC Knill and A Pouget. The bayesian brain: the role of uncertainty in
neural coding and computation. Trends Neurosci, 27(12), 2004.

[7] T Michalke, R Kastner, J Fritsch, and C Goerick. A generic temporal in-
tegration approach for enhancing feature-based road-detection systems. In
Intelligent Transportation Systems Conference, Peking, 2008. IEEE Press.

[8] Martin Heracles, Bram Bolder, and Christian Goerick. Fast detection of
arbitrary planar surfaces from unreliable 3D data. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2009.

[9] Jens Schmuedderich, Nils Einecke, Stephan Hasler, Alexander Gepperth,
Bram Bolder, Robert Kastner, Mathias Franzius, Sven Rebhan, Benjamin
Dittes, Heiko Wersing, Julian Eggert, Jannik Fritsch, and Christian Go-
erick. System approach for multi-purpose representations of traffic scene
elements. In 13th International IEEE Annual Conference on Intelligent
Transportation Systems, 2010.

[10] P Dollar, C Wojek, B Schiele, and P Perona. Pedestrian detection: A
benchmark. In CVPR, June 2009.

[11] Antonello Ceravola, Marcus Stein, and Christian Goerick. Researching and
developing a real-time infrastructure for intelligent systems. Robotics and
Autonomous Systems, 2007.

16

[12] L. Wolf and S.M. Bileschi. A critical view of context. IJCV, 69(2):251–261,
August 2006.

[13] Dan Roth Shivani Agarwal, Aatif Awan. Learning to detect objects in im-
ages via a sparse, part-based representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(11), 2004.

[14] M Enzweiler and DM Gavrila. Monocular pedestrian detection: Survey and
experiments. IEEE Trans. on Pattern Analysis and Machine Intelligence,
2008.

[15] BC Russell, A Torralba, KP Murphy, and WT Freeman. Labelme: a
database and web-based tool for image annotation. International Jour-
nal of Computer Vision, 77(1-3), 2008.

17

