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Abstract

In this contribution we present a large-scale hierarchical system for
object detection fusing bottom-up (signal-driven) processing results with
top-down (model or task-driven) attentional modulation. Specifically, we
focus on the question of how the autonomous learning of invariant models
can be embedded into a performing system, and how such models can be
used to define object-specific attentional modulation signals.

Our system implements bi-directional data flow in a processing hier-
archy. The bottom-up data flow proceeds from a preprocessing level to
the hypothesis level where object hypotheses created by exhaustive ob-
ject detection algorithms are represented in a roughly retinotopic way. A
competitive selection mechanism is used to determine the most confident
hypotheses, which are used on the system level to train multimodal models
that link object identity to invariant hypothesis properties.

The top-down data flow originates at the system level, where the
trained multimodal models are used to obtain space- and feature-based
attentional modulation signals, providing biases for the competitive se-
lection process at the hypothesis level. This results in object-specific hy-
pothesis facilitation/suppression in certain image regions which we show
to be applicable to different object detection mechanisms.

In order to demonstrate the benefits of this approach, we apply the
system to the detection of cars in a variety of challenging traffic videos.
Evaluating our approach on approximately 3500 annotated video images
from more than 1h of driving, we can show strong increases in performance
and generalization as compared to object detection in isolation. Further-
more, we compare our results to a late hypothesis rejection approach,
showing that early coupling of top-down and bottom-up information is a
favorable approach especially when processing resources are constrained.
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1 Introduction

Visual processing in the human neocortex is organized in a hierarchical fash-
ion: neurons in lower levels such as LGN and V1 and A1 have small receptive
fields and are sensitive to a very specific set of stimuli, whereas neurons in
higher areas tend to have larger receptive fields and are increasingly broad in
their selectivity[31]. As a consequence, neural activity in lower hierarchy levels
is tightly coupled to sensory input whereas higher-level neurons may well re-
spond to rather abstract categories and concepts[31]. It has long been known
that information processing in such hierarchies is bi-directional, consisting of a
bottom-up (away from sensory input) and a top-down (towards sensory input)
component[12, 17], and this has been linked to accounts of attentional modu-
lation, i.e., the selective and large-scale enhancing or suppressing of neuronal
responses in accordance with task demands[14, 22, 32]. For visual processing,
there seem to exist at least two concurrently active mechanisms of attentional
modulation: space-based attention which enhances certain locations in the visual
field and feature-based attention which is not localized but affects all populations
of neurons representing a particular visual property[11].

Since cortical neurons, especially at high hierarchy levels, compete strongly
with each other for representing the current stimulus, it has been proposed
that local facilitation or inhibition of neural responses by top-down signals
can explain the pronounced effects of attentional modulation simply because
small local biases may result in very different stable states of the competition
process[4, 18, 28]. This biased competition [4] account of attentional modula-
tion has influenced many models of visual attention; we incorporated it into
our research because we found that competition between object hypotheses is
an unavoidable step for agents with constrained resources; the ”biasing” of the
existing competition mechanism is a then straightforward extension.

Since attentional modulation is observed to enhance performance w.r.t. a
wide variety of tasks, the question immediately arises how models for task-
specific attentional modulation are obtained. An influential concept, the so-
called reverse hierarchy theory [12] states that such models are first acquired
in high levels of the processing hierarchy and subsequently used to train task-
specific responses in lower levels. We present the method of system-level learning
which implements an important aspect of reverse hierarchy theory by introduc-
ing dependency models between highly invariant quantities available on the
highest level of a processing system. This is motivated by our finding that such
system-level models usually show high generalization ability.

1.1 Motivation for the presented work

Our experience with cluttered and uncontrolled traffic environments suggests
that purely appearance-based (i.e. based on local pixel patterns) object de-
tection suffers from significant ambiguities: the more complex a scene is, the
higher is the probability that some local pixel pattern will be similar to the
object class of interest. In order to overcome this difficulty, we claim that
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object-specific models relating appearance-based visual information to non-local
and non-visual information must be taken into account to achieve the required
disambiguation. For convergent, hierarchically organized systems, this implies
that such models can only be formed at high hierarchy levels where the required
information is available. The idea of system-level learning (see also [8]) is to rep-
resent all quantities available at the highest hierarchy level in a common way in
order to use a single, scalable learning algorithm for detecting correlations. The
focus of this article is to use system-level models for generating and using ex-
pectations to generate attentional modulation: given a search cue, e.g. a certain
object identity, system-level models are queried for features correlated with this
identity, and the resulting expectation is used to define attentional modulation.

1.2 Research Questions, claims and messages

Based on our experience with object detection in complex traffic scenes, we
formulated a number of hypotheses. which this article will investigate based
on a hierarchical car detection system system as shown in Fig. 1. We evaluate
the system in challenging real-world situations using extended annotated video
sequences 1.

Hypothesis 1: Detection performance The goal of this article is to demon-
strate that attentional modulation signals can be derived from system-level
models, and that their application to lower hierarchy levels results in strongly
increased performance in object detection, as well as in significant generaliza-
tion ability. The beneficial effect of suitable attentional modulation has been
established in previous studies[33] in simple environments, and without using
learning; our goal is to show that the benefit is even more pronounced in complex
outdoor situations, and that learning attentional modulation is both feasible and
efficient.

Hypothesis 2: Generality We advocate the view that biased competition[4]
is a common mechanism for attentional modulation in neocortical hierarchies.
In order to demonstrate this particular point, we conduct experiments with
a symmetry-based object detection method and show that it can be success-
fully controlled by attentional modulation using a common competitive selection
mechanism.

Hypothesis 3: Robustness We aim to show that the fusion of modulation
signals is feasible, computationally efficient and increases robustness especially
in difficult environments. Although the issue of fusing multiple modulation
signals has been studied in indoor settings (see, e.g., [13, 35]), our goal is to
verify the benefits in a challenging outdoor scenario. In particular, we intend

1We will make available the videos and annotations described in this article to researchers

upon email request to the first author
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Figure 1: Illustration of the basic structure and the inherent novel points of the
presented system. 1) Learning of multi-modal system-level models for generat-
ing attentional modulation during system operation 2) Application of system-
level models for attentional modulation. What kinds of models are learned ef-
fectively depends only on the processing results that are supplied to the system-
level learning mechanism.

.

to demonstrate that performance is unaffected by the inclusion (or omission) of
uninformative modulation signals when using our fusion approach.

Hypothesis 4: Efficiency We hypothesize that the concept of applying at-
tentional modulation early in a processing hierarchy is a consequence of con-
strained resources. We verify this by comparing the object detection perfor-
mance of our system under strong resource constraints when using attentional
modulation versus when using a naive high-level rejection approach.

Hypothesis 5: Bootstrapping This article aims to show that successful
training of system-level models can occur using a self-generated supervision
signal. Bootstrapping is a well-known and nontrivial issue (see, e.g., [21, 29]);
However, a system capable of bootstrapping will be truly capable of autonomous
learning in an embodied agent, which will eliminate the effort of creating super-
vision signals completely.
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1.3 Related work

Visual attention has been subject of intense research in the recent decades, re-
sulting in a number of theoretical models such as Guided Search 2.0[40], Selective
Tuning[34] or Biased Competition[4].

A large number of computational models were proposed subsequently, which
we will review in this section, focusing mainly on approaches that address learn-
ing of attentional modulation.

A strictly feature-based attention model was proposed by [16]. It focuses on
feed-forward processing and lateral competition, either in the form of center-
surround filtering or explicit competition mechanisms. This model was applied
in numerous real-world scenarios, e.g., [15], for goal-driven scene analysis[25] or
fast object detection and recognition[37]. While the work described in [25] em-
ploys high-level semantic models of object-to-object or object-to-goal relations
to guide visual attention to behaviorally important locations, these models are
specified by a designer and not acquired through learning. The work of [37]
couples an exhaustive object detection mechanism to signal-driven saliency with
beneficial results. In this approach, object-specific models enter only through
training the object detection mechanism.

The coupling of object detection and contextual information mediated by
low-level modulation is demonstrated in [24] where context information about
the ”gist”, i.e., a low-dimensional description of a scene, is used to infer the
locations of relevant objects in images by statistical models constructed from
training examples. In this work, learning is achieved by computing statistical
models about the location and size of objects depending on scene gist in an
offline fashion. The concept of gist is taken further in [13] where a generic
probabilistic model of 3D scene layout is proposed that can be queried for likely
image locations of, e.g., cars or pedestrians in order to inform an exhaustive
local object detector. This work is interesting because the images used to reason
about 3D scene layout were actually monocular. Furthermore, object detection
may not only be guided by global scene properties but also by other objects in
the scene: in [3], a discriminative model of local object-to-object interaction is
proposed that formalizes cooperation and competition between local detections
of multiple object classes and gives a probabilistic interpretation of this process.
Lastly, object detection may also be regarded as an active process in which the
performed gaze actions (i.e., object detections) should maximize information
acquisition. Based on the saliency map approach of [16], a POMDP formalism
is used in [35, 36] to optimize gaze target selection based on the detections
arising from previous gaze targets, visual saliency and global scene priors.

The Selective Tuning Model, originally proposed in [34], was integrated into a
number of computational attention models. The focus of these models is, on the
one hand, on explaining cognitive phenomena such as feature binding in cortical
hierarchies[30] and, on the other hand, showing real-world capability using,
e.g., visual motion as attentional cue as demonstrated in[33]. Methodically, the
Selective Tuning model is a feature-based model that emphasizes the importance
of lateral competition (modeled by winner-takes-all mechanisms) and top-down
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feedback signals. The models used to generate attentional modulation signals
are not obtained by learning but chosen ”by hand”. Qualitative evaluation is
performed on indoor scenes to validate and demonstrate the used models.

Attentional models more strongly motivated by neural processing can be
found in [2, 9, 10]. All employ neural dynamics as a key ingredient with em-
phasis on bottom-up and top-down data flow in recurrent architectures. A key
issue in [9, 10] is the interplay and fusion of bottom-up and top-down informa-
tion, where the realization of biased competition by the modulating competitive
neural dynamics is central to the work of [2]. Whereas the attentional effects
obtained in [2] are purely feature-based, the models of [9, 10] include aspects
of space-based attentional modulation as well. Evaluation is performed on still-
images of indoor scenes in [9, 10] and by an analysis of single-neuron responses
in [2]. Both models do not emphasize learning but employ fixed models for
generating attentional modulation.

Another group of attention models focuses on feature-based, object-specific
selectivity through learned search models, as well as applicability in real-world
scenarios. Whereas the work of [23] focuses on car detection in road traffic
scenarios, the VOCUS model[6] targets mobile robotics applications. Both ap-
proaches use an offline optimization procedure to generate feature-based object
search templates based on small numbers of image patches. These templates
are fused with a bottom-up attention signal similar to [16] such that both vi-
sual saliency as well as proximity to the search template may trigger object
detection.

2 Methods

We present a system (see Figs. 1,2 and [7]) of significant complexity which
receives inputs from a stereo camera, the vehicle-internal CAN bus and two
laser range-finding sensors. It computes a list of entities that are judged to be
relevant, i.e., cars and vehicles. The system is not yet running in a vehicle but
receives its inputs by a timestep-based replay of recorded data, which is exactly
equivalent to the way data would be received in our prototype vehicle. Since
the system is not operating on ”live” data, it is possible to replay annotations
(e.g., positions and identities of other traffic participants) as ”virtual sensors”,
that is, as if they were obtained from measurements.

2.1 Interfacing of system components by population cod-

ing

Population coding is a biologically inspired way of encoding information. Basic
properties of population coding models[26, 41] are the representation of infor-
mation on two-dimensional surfaces in analogy to cortical surfaces, and, on the
other hand, the concept of storing confidence distributions for all represented
quantities.
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Figure 2: Global structure of the described hierarchical object detection sys-
tem. Functional modules are object detection (A,B), stereo processing (C),
free-area computation (D), competitive hypothesis selection (E) and popula-
tion encoding (F). Attentional modulation is trained at the system-level (G),
linking hypothesis identity to elevation, distance, distance-to-free-area and 2D
image position (F). System-level training happens in a supervised way using
”true” object identities supplied by ground-truth data. Given an arbitrary de-
sired object identity (the search cue), attentional modulation is applied to the
hypothesis level of object detection, thus favoring the detection of objects of
the desired identity. Data flows from symmetry detection (A) to other modules
are identical to data flow from the appearance-based classifier (B) but are not
shown for clarity. For comparison, we also implemented a ”late rejection” mod-
ule at system level (H) which uses a multilayer perceptron for directly (without
influencing lower system levels) mapping population-coded quantities produced
at the hypothesis level to an object identity decision.
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Figure 3: Transfer of different types of measurements to population codes. The
particular type of measurement determines how it is translated into a population
code. A) a discrete distribution from, e.g., an object classifier, is translated into
a population code where only certain locations carry information. B),C) Quasi-
continuous one-dimensional measurements (e.g., object elevation and distance)
are encoded into population codes that are extended along one axis. Note that
the uncertainty (multimodality) of measured distributions is transferred to the
resulting population code. The precise way of encoding is determined on a
case-by-case basis.

Mathematically, a population code is therefore a collection of one or several
two-dimensional lattices, where each lattice point (”neuron”) stores a normal-
ized confidence value corresponding to the belief that a certain property (”pre-
ferred stimulus”) associated with this lattice point is present in the encoded
information. These properties link population coding closely to the Bayesian
approach to probability[1]. In particular, population coding represents encoded
quantities as distributions over possible values, thus implicitly storing the asso-
ciated uncertainty in accordance with the ”Bayesian brain” hypothesis[19].

In order to be able to link system-level information by learning methods as
described in Sec. 2.8, we convert such quantities into population codes. The
system-level quantities we want to encode are confidence distributions which
may be either one- or two-dimensional which we denote source distributions.
The nature of source distributions may be spatially discrete (i.e., having nonzero
confidence values only at certain positions) or continuous as well as graded (with
confidences assuming values in a range between 0.0 and 1.0) or binary. Examples
of different kinds of source distributions and their population encoding are shown
in Fig. 3. For the actual encoding, we employ the convolution coding technique
[26] using a Gaussian kernel of fixed size. In case a source distribution is one-
dimensional, we embed it into a two-dimensional distribution along a specified
axis before performing convolution coding.

2.2 The appearance-based classifier

The appearance-based classifier[39] generates object hypotheses in two succes-
sive steps. As a first step, it generates retinotopic confidence maps as described
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Figure 4: Performance example of symmetry-based object detection. A) Em-
bedding into processing system. B) Input image and generated multi-scale
confidence map. A total of K = 8 scales is used for symmetry, corresponding to
filters of pixel height h = 3 and half-width w

2
= 5, 9, 13, 18, 25, 35, 49, 69. Shown

are confidence maps corresponding to filter widths 5,25 and 69.

in [38]. Each pixel of a confidence map represents the detection of a specific view
of an object (in our case: back-views of cars) at a specific scale k = 0, . . . , K−1.
In a second step, object hypotheses are generated from the confidence maps by
the competitive selection process described in Sec. 2.7. Details about processing
and classifier training are given in [7].

2.3 Symmetry-based object detection

Just as the appearance-based classifier, symmetry-based object detection gener-
ates object hypotheses in two steps: first, generation of a multiscale, retinotopic
confidence map and second, competitive hypothesis selection (see Sec. 2.7) based
on the produced maps. Fig. 4 shows an example of a confidence map for a given
input image. Details of the symmetry calculation can be found in [7].

2.4 Free-area computation

The free area is defined as the obstacle-free area in front of the car that is vi-
sually similar to a road. This quantity carries significant semantic information.
Since it is, by construction, bounded by all obstacles that the car might collide
with, many relevant obstacles are close to the boundaries of the free area. For
the purposes of the presented system, the quantity of interest is therefore the
distance of an object hypothesis to the free area. Details of free-area calcula-
tion and the transfer to population codes are given in [7]. Please see Fig. 5
for examples of free-area computation and the transfer of the corresponding
distance-to-free-area measurement to population codes z1(~p).
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2.5 Distance and elevation computations

We employ dense stereo processing for measuring the distance and height of
image pixels in car-centered coordinates. For obtaining hints about the identity
of objects, such measurements are helpful but not optimal: It is not really
the height relative to a car-centered coordinate system that carries semantic
information, but rather the height over the road surface. Details about the
computation of this quantity as well as stereo distance computation are given in
[7]. Please see Fig. 7 for an example of the transfer of elevation (and distance)
measurements to population codes z2(~p), z3(~p).

2.6 Position and size related analysis

Lastly, two important system-level quantities are ”retinal” hypothesis position
and size. Even though the retinal position of objects changes, for example, dur-
ing turning maneuvers (similar examples can be mentioned for retinal size), we
found that these quantities can nevertheless provide useful hints about object
identity. Therefore, they are encoded into population codes z0

i (~p) at the hy-
pothesis level of our system as shown in Fig. 6. Details about computation and
population encoding are given in [7].

2.7 Competitive hypothesis selection

Situated on the hypothesis level of our system (see Fig. 2), competitive hypoth-
esis selection is roughly modeled based on the way lateral inhibition operates in

Figure 5: Performance example of free-area and distance-to-free-area compu-
tation for two object hypotheses. A) Embedding into processing system B)
Video image C) computed free area F̃ 1(~x) D) pixelwise distance-to-free area
map F 1(~x). Each pixel value in the map is determined by that pixel’s minimal
distance to a computed free-area pixel. Due to computational reasons, an upper
limit dmax is imposed. Note that distances are negative for pixels on the free
area. E) Population codes z1(~p) obtained for two different object hypotheses.
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cortical surfaces. It requires a resolution pyramid of K scales containing retino-
topic confidence maps ci(~x), i = 0, . . . , K−1 produced either by the appearance-
based classifier or the symmetry detection (see Secs. 2.2, 2.3), and generates up
to a desired number H of object hypotheses hj , j = 1, . . . , H. Examples of
retinotopic confidence maps at several pyramid levels are shown in Figs. 8 and
4. Selection processes described in this article typically use a value of H = 40.

Bottom-up operation Based on the pyramid of confidence maps, ci(~x), local
activity maxima are detected across all scales i ∈ [0, K]. Each local maximum
with index j at a position ~x∗

j and scale s∗j is interpreted as a rectangular object
hypothesis centered at ~x∗

j , having a width/height determined by s∗j . Based on
the peak values cs∗

j
(~x∗

j ), the list of maxima is subjected to a thresholding oper-
ation to suppress weak hypotheses. This threshold θ, θ > 0, strongly influences
the number of generated hypotheses and the types of possible errors. With in-
creasing threshold usually more objects are missed, while low thresholds lead to
increased false detections. Competitive hypothesis selection works in a greedy
fashion, i.e., the maximum with the highest peak value is chosen first and its
position and scale ~x∗

0, s∗0 are used to define a surrounding region of inhibition
(see Fig. 8) in all confidence maps ci(~x). Maxima in inhibited regions cannot be
selected any more. The remaining maxima are processed in descending order,
where all hypotheses are rejected whose area intersects with an already inhib-
ited area by more than 75%. The process stops when the desired number of
hypotheses, H , is reached or no further local maxima remain. We discovered
that the detection performance for cars increases when using a specific region
of inhibition which is higher and less wide than the object hypothesis itself,
probably because this accounts better for the typical occlusions between cars.

Integrating attentional modulation Assuming a pyramid of attentional
modulation maps mi(~x), mi(~x) ∈ [0, 1] ∀~x, i, attentional modulation can be
applied before hypothesis selection:

cmod
i (~x) = ci(~x)mi(~x) (1)

This process provides a systematic bias to the competitive hypothesis selection
by changing the relative strengths of local maxima in the confidence maps,
thus realizing biased competition[4]. In effect, attentional modulation enhances
or attenuates local maxima depending on their agreement with the system-
level models encoded in the modulation maps. Sufficiently strong local maxima
can survive even though they are attenuated by attentional modulation if they
continue to exceed the selection threshold, and if there are no competing local
maxima within the radius of inhibition. Examples of the ”survival” of strong
local maxima can be observed in Fig. 9.

2.8 Data transmission and associative learning

We assume that positions ~x, ~y in arbitrary population-coded neural represen-
tations A,B with activities zA(~x, t), zB(~y, t) (see, e.g., Fig. 3) are connected by

11



synaptic weights wAB
~x~y . The transmission of information from A to B by means of

learned synaptic connections wAB
~x~y is governed by a simple linear transformation

rule:

zB(~y, t) =
∑

~x

wAB
~x~y (t)zA(~x, t). (2)

We employ a supervised learning strategy where the supervision signal can
come from annotated data or can be generated within the system (bootstrap-
ping).

In line with our focus on simple but generic learning methods, we perform
an online gradient-based optimization of (2) based on the mean squared error
w.r.t the teaching signal for neurons in representation B. Given two neurons at
positions ~x, ~y with activities zA(~x), zB(~y) in two population-coded representa-
tions A,B, plus a teaching signal for representation B, tB(~y), the learning rule
reads

wAB
~x~y (t + 1) = εzA(~x)[zB(~y) − tB(~y)]

≡ εx(y − y∗).

(3)

where ε << 1 is a small learning rate constant. We used the abbreviations x ≡
zA(~x, t), y ≡ zB(~y, t), y∗ ≡ tB(~y, t) for presynaptic and postsynaptic neurons as
well as target values to obtain a more usual way of writing this learning rule.

For obtaining the expected activity in a population-coded representation B,
we simply train weights wBA

~x~y performing the reverse mapping B → A and thus
can obtain

eA(~x, t) =
∑

~y

wBA
~x~y (t)zB(~y, t) (4)

2.9 System-level learning of object models

Input to the system-level, the highest hierarchy level of our system, is the set of
population codes for space/feature-based hypothesis poperties z0

i (~x), z1,2,3(~x) as
well as ground-truth data, i.e, information about ”true” positions and identities
of relevant objects obtained from annotations (see Sec. 2.13).

As shown in Fig. 10, the following steps are performed for each hypothesis:
the hypothesis and the feature maps are jointly used to generate population-
coded representations of hypothesis features (see Fig. 3), in this case distance,
elevation, image position and distance-to-free-area. Using ground-truth data
(see Fig. 2), a population-coded representation of the teaching signal for object
identity is generated (see Fig. 3) depending on whether there is an annotated
object containing the center pixel of the hypothesis (see [7] for details). Al-
ternatively, the population-coded teaching signals may also be obtained from
the identity estimate provided by the appearance-based classifier. The teaching
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signal is then used to update the mapping from population-coded hypothesis
features to object identity.

We perform training using a procedure called blocking: we group the stream
of hypotheses into intervals corresponding to 30s of real time and apply system-
level model training only for odd-numbered groups. The even-numbered groups
are later used for evaluation, therefore they are processed using a learning con-
stant of ε = 0.0. Blocking is a widely accepted procedure (see [20]) that allows
us to train and evaluate system-level models on all streams while maintaining
a high dissimilarity between training and evaluation sets (traffic scenes usually
change strongly in 30s).

2.10 Generation of object-specific attentional modulation

This function is in many respects the reverse of the learning procedure shown
in Fig. 10: a population-coded object identity (see Fig. 3), the search cue,
is specified and activation is propagated backwards through the system-level
network using Eqn.(4), the search cue and the learned reverse weight matrices.
In this way, object-specific expected feature distributions ek(~p) are obtained,
again in the form of population codes.

For space-based attention, the reverse propagation produces a pyramid of
K expected image position distributions e0

i (~p), i = 0, . . . , K − 1 which can be
upscaled using bicubic interpolation to obtain space-based modulation signals:

m0
i (~x) = scaleN,Me0

i (~p) (5)

For feature-based attentional modulation, the expected feature distributions
ek(~p), k = 1, 2, 3 must first be decoded. Since each position ~p in a population-
coded representation is associated with a certain feature value, the expected
feature distributions can be transformed from distributions over positions, ek(~p),
into distributions over feature values, ẽk(p̃n), n = 1, . . . , ν. For feature-based
attention, we set ν = 1 whereas space-based attention requires ν = 2 since we
encode a two-dimensional image position.

Individual feature-based attentional modulation signals mk(~x) can be gen-
erated by a lookup operation in retinotopic feature maps F k(~x) produced by
the algorithms of the preprocessing level, see Secs. 2.5, 2.4:

mk(~x) = ẽk(F k(~x)). (6)

Up to this point, feature-based modulation maps are only selective for feature
values and not to position and size of object hypotheses. In order to fuse feature-
and space-based modulation signals, we first perform a separate normalization
step for space- and feature-based contributions. Subsequently, we sum feature-
based modulation signals and duplicate them over all pyramid scales. The final
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normalized multiscale modulation map mi(~x), i = 0, . . . , K − 1 is obtained by

m̂k(~x) =
mk(~x)

maxκ∈{1,2,3},~xmκ(~x)
, k ∈ {1, 2, 3}

m̂0
i (~x) =

m0
i (~x)

maxi,~xm0
i (~x)

m̃i(~x) =

(

∑

κ=1,2,3

m̂κ(~x)

)

+ m̂0
i (~x)

mi(~x) =
m̃i(~x)

maxj,~xm̃j(~x)
(7)

The multiscale modulation map mi(~x) is used to influence competitive hy-
pothesis selection as described in Sec. 2.7. The process of generating attentional
modulation using learned system-level models is schematically shown in Fig. 11;
the fusion of space- and feature-based modulation signals is separately visualized
in Fig. 12.

2.11 Model training for ”late rejection”

In order to perform ”late rejection” of object hypotheses as envisioned in Fig. 2,
a mapping from population-coded system-level quantities to object identity
(likewise a system-level quantity) must be determined. In addition to the avail-
able linear system-level models, we use a multilayer perceptron (MLP) for this
task which may achieve better performance due to the employed nonlinearities.

MLP training is performed in an offline fashion; we run the system without
attentional modulation on stream I (see Sec. 2.13 and Fig. 13), recording the
population codes generated for the first 10000 object hypotheses. Inputs to the
MLP are data vectors consisting of the concatenation of all population-codes
obtained from a single hypothesis, where population codes are downsampled
to a size of 16x16 pixels. The dimensionality of the input space is therefore
256 x 19 = 4864, thus encompassing distance, distance-to-free-area, elevation
and the 16 position features). We train the MLP using Rprop, early stopping
regularization, weight decay and manual equalization of the imbalance between
car and non-car examples[27]. The MLP uses a sigmoid nonlinearity and has
three layers: one input, a hidden layer of size 50 and an output layer of size
1. The size of the input layer is given by the summed size of the system-
level features described in Sec. 2.8. The teaching signal is applied such that
an activity of 1.0 at the output neuron indicates car detection whereas a value
of 0.0 corresponds to a non-car object. The training of system-level models is
performed by running the system without modulation using a learning constant
of ε = 0.0001; Both methods are trained respecting the blocking procedure of
Sec. 2.9, the blocking interval being 30s.
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2.12 System configurations

The described system can be run in two ways: in training mode and processing
mode.

In training mode, the appearance-based classifier is used for hypothesis gen-
eration using a competitive selection threshold (see Sec. 2.7) of θclass = 0.0.
Furthermore, the neural learning constant ε (see Sec. 2.8) is set to 0.00002 which
amounts to assuming 1

ε
= 50000 training examples (more examples do not cause

problems, however the relative influence of ”old” examples deteriorates in this
case). Learning is disabled for examples from the evaluation set (see Sec. 2.9).
The system is presented with a concatenation of video streams I,II,III. Once 1

ε

training examples are processed, training is stopped and the neural weights are
stored. During training mode, attentional modulation is disabled since models
are only meaningful after training. This is again for convenience only since un-
trained attentional modulation essentially produces a constant distribution over
the image and is thus not causing any effects.

In processing mode, learning is switched off by setting ε ≡ 0. Instead, previ-
ously trained weights are used to generate attentional modulation. In process-
ing mode, either symmetry (see Sec. 2.3) or the appearance-based classifier (see
Sec. 2.2) are used for generating object hypotheses but never both at the same
time.

Since object hypotheses have to be of sufficient quality for the online training
of accurate system-level models, we do not use symmetry in training mode
since its overall car detection performance (when not supported by attentional
modulation) is poor, see also Sec. 3. In contrast, we are able to evaluate both
methods separately in processing mode with no detrimental effects. Generally,
classifier and symmetry have to be used in a mutually exclusive way since the
system does not ”fuse” results from different object detection mechanisms in
the presented form. Apart from this technical point, the distinction between
training and processing mode is for convenience only: in this way, the system
needs to be trained only once instead of being trained separately for every
performance evaluation. A detailed list of parameter settings in training and
processing mode can be found in Tab. 2.

2.13 Experimental setup

Video streams and annotations We recorded five distinct video streams
covering a significant range of traffic, environment and weather conditions. All
videos are around 15 minutes in length and were taken during test drives along
a fixed route covering mainly inner-city areas, along with short times of highway
driving. Please see Tab. 1 for details and Fig. 13 for a visual impression. For the
quantitative evaluation of object detection performance, we manually annotated
relevant objects in the recorded video streams, please see Fig. 14 for details.

Evaluation measures For each image, we compute the number of false pos-
itive hypotheses and false negative annotations (see Fig. 15). From these,
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ID weather daytime single images annotated images
I overcast,dry afternoon 9843 957
II low sun, dry late afternoon 22600 949
III heavy rain afternoon 6725 643
IV dry midnight 6826 464
V after heavy snow afternoon 16551 867

Table 1: Details about the used video streams. Please note that streams II and
V were recorded at a frame rate of 20Hz.

Table 2: Global parameters used for experiment
Parameter explanation value

H max. Nr of Hypotheses 40 or 10 (Sec. 3.6)
N,M image/feature map size 400,300
n,m population code size 64,64
θclass classifier selection threshold task-dependent, 0.0 for eval.
θsymm symmetry selection threshold task-dependent, 0.0 for eval.
θMLP symmetry selection threshold task-dependent, 0.0 for eval.

ε system-level learning rate 0.00002 or 0.0001 (Sec. 3.2)
K nr of pyramid scales 16 (classifier) or 8 (symmetry)

nblocking blocking interval 30s

we obtain two standard quality measures (see,e.g., [5]) denoted false positives
per image (fppi) and recall. For a fixed parameterization of the system, the
performance is given by a point in a recall/fppi-diagram. By plotting these
two quantities against each other for variations of the detection thresholds
θclass or θsymm, we obtain plots similar in interpretation to receiver-operator-
characteristics (ROCs). Such ROC-like plots will be used for visualizing object
detection performance in Sec. 3. We only consider annotations whose associated
occlusion value (see Fig. 14)is less than 80%.

3 Experiments and Results

For all experiments, the training and evaluation of system-level models is per-
formed using the blocking procedure described in Sec. 2.9. To reduce computa-
tional effort, the variation of the object detection thresholds, be it θclass, θsymm

or θMLP, is not conducted by running the system over a whole video stream
for each possible threshold value. Rather, the system is run once using object
detection thresholds of 0.0 and simultaneous storing of object detection con-
fidences. Subsequently, detection performance for all threshold values can be
computed offline using the recorded confidences. As a consequence, all object
detection thresholds have zero values in Tab. 2. For actually running the system
for performing car detection, a suitable threshold would have to be selected for
either θclass, θsymm or θMLP.
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3.1 Effect of learned attentional modulation on object de-

tection performance

For determining the performance gain due to attentional modulation, system-
level models are trained using streams I,II,III (since a comprehensive training set
can be expected to result in good generalization ability of the trained models).
Performance is evaluated for the appearance-based classifier on streams I-V us-
ing both space- and feature-based attentional modulation. In order to establish
a baseline for comparison, we additionally evaluate the system’s performance
when attentional modulation is disabled (i.e., the pyramid of modulation maps
from Sec. 2.7 is set to mi(~x) ≡ 1) which amounts to evaluating the appearance-
based classifier alone.

As described in Sec. 2.13, we create ROC-like plots by varying the classifier
threshold θclass (see Sec. 2.2) for comparing the system performance to baseline
performance. The resulting plots are given in Fig. 16.

3.2 Generalization to different environment conditions

In analogy to cross-validation methods, this experiment is intended to show
that training system-level models on data from any video stream and testing on
the remaining ones gives comparable performance in each case. We therefore
trained system-level models on each stream separately using parameters given
in Tab. 2 and evaluated on streams I-V as in Sec. 3.1. Results did not show
notable differences to the performance observed in Sec. 3.1, therefore Fig. 17
shows results only for the case of training using stream III, one of the most
challenging video streams.

3.3 Bootstrapping using the appearance-based classifier

The third experiment is intended to show that the successful training of system-
level models does not require annotations. In the case of the presented system,
the appearance-based classifier (see Sec. 2.2) can, due to its already strong per-
formance, replace annotated data by its object class estimate for each training
sample. Each object class estimate provided by the classifier is converted to a
population code as described in Sec. 2 and Fig. 3 and provided as supervision
signal to the training of models (see Sec. 2.9). Results are shown in Fig. 18.

3.4 Fusion of multiple modulation signals

This set of experiments provides insights into the effects of fusing attentional
modulation signals. Using system-level models trained as described in Sec. 3.1,
we repeatedly evaluate the system’s performance for streams I-V, applying var-
ious subsets out of the set of available modulation signals. In this way, we can
quantify the individual contributions of each modulation signal when using the
fusion mechanism described in Sec. 2.10. Furthermore, we conduct experiments
about the effects of the uninformative distance-based modulation signal (see
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Sec. 4.1) on the fusion process as stated in Sec. 1.2. By including and omitting
this modulation signal, a quantitative statement w.r.t. the robustness of the
fusion process can be obtained. The results can be viewed in Fig. 19.

3.5 Generalization to different object detection methods

In order to show that attentional modulation can be applied with benefits to
different object detection algorithms, we evaluate the effects of attentional mod-
ulation using symmetry (see Sec. 2.3) for generating object hypotheses. Sym-
metry requires no training but only produces meaningful object hypotheses at
night. Therefore, evaluation was conducted using stream IV only. The results
are given in Fig. 20.

3.6 Assessment of early attentional modulation versus late

rejection

This experiment is intended to assess performance differences between our method
of attentional modulation where models are coupled in early, i.e., before com-
petitive hypothesis selection (see Sec. 2.7), and the alternative where a late
coupling of models is performed, i.e., after hypothesis selection. For this pur-
pose, we implement and train such a ”late” system as described in Sec. 2.11 and
compare its performance to that achieved using ”early” attentional modulation.

For this purpose, two experiments are conducted for each stream, differing
only in the value of H , the upper limit on the number of hypotheses imposed by
competitive hypothesis selection (see Sec. 2.7). The different values of H reflect
different degrees of resource constraints: H = 40 represents the default case of
abundant resources, whereas H = 10 is intended to simulate strong constraints
on, e.g., processing time.

For both experiments, the performance of late rejection and early modulation
is evaluated. This is achieved by varying one of the thresholds θclass, θMLP

while leaving the other at 0.0. We therefore obtain two ROC-like curves per
experiment and stream. For each stream, we now compare performances of
early and late approaches for different values of H . Evaluation is performed on
streams I-V but did not differ significantly, therefore Fig. 20 shows only results
for stream I and III.

4 Discussion

In this section, we will discuss the evaluation of the presented system w.r.t.
these requirements, based on the research hypotheses put forward in Sec. 1.
In Sec. 4.3, we will present a critical comparison to existing work and suggest
possible improvements.
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4.1 Assessment of results w.r.t. research hypotheses

Performance increase by attentional modulation The experiments of
Sec. 3.1 showed that the ”translation” of multimodal system-level models into
attentional modulation signals is feasible and results in significantly increased
object detection performance. The performance increase is more marked for
the ”difficult” streams IV and V; we hypothesize that this is due to increased
visual ambiguity (caused by imprecise classifier models, low light or low contrast
conditions) whose resolution by attentional modulation then has a potentially
larger effect. It can also be observed that attentional modulation improves
performance on both the fppi and the recall axis in Figs. 16,17, reflecting the
fact that modulation can enhance as well as suppress. To be certain of our
results, we checked whether the performance increase occurs for stricter match
measures (see Sec. 2.13) as well and found that, although absolute performance
drops, the relative improvement by attentional modulation persists.

Generalization The results presented in Sec. 3.2 suggest that trained atten-
tional modulation, in contrast to the appearance-based classifier, exhibits signif-
icant generalization to environment and weather conditions encountered in the
video streams. The system-level models of Sec. 3.2 are trained using examples
from stream III only: nevertheless performance of the attentional modulation on
the remaining streams, e.g., I,II,IV,V is strong. When using the blocking pro-
cedure on the same video stream, it might be argued that general environment
conditions are still shared because they are taken from the same video stream.
However, considering the extreme differences in lighting, visibility and contrast
between video streams, this experiment demonstrates that strong generalization
can indeed be achieved.

It should be ensured that this generalization is due to the system-level models
and not just coincidence. Although it is unlikely that overfitting occurs given
the good generalization demonstrated for attentional modulation signals, we
want to explicitly compare performance of system-level models on training and
evaluation sets. For this purpose, we employed the training and evaluation
procedures described in Sec. 2.11 using stream I. Fig. 21 shows that performance
on the training sets is superior, but only slightly. These results persist when
using video streams II-V.

Given the strong within-stream differences that are reflected by the large
blocking interval, we can state that overfitting does not occur to a significant
extent. It is intuitively clear that small blocking intervals lead to similar training
and test sets in continuous video streams. Since there is one annotated image
per second, and as there are 30-40 training examples (object hypotheses) per
image, the blocking interval of 30s amounts to approximately 1000 examples.
For this reason, we argue that training and test sets are sufficiently dissimilar to
assess generalization behavior. The blocking procedure described in Sec. 2.11 is
an accepted way of evaluating the real-world performance of detection systems,
see, e.g.,[20].
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Fusion of attentional modulation models The experiments of Sec. 3.4
show that the fusion of informative attentional modulation signals improves
performance. Conversely, performance is unaffected when an uninformative sig-
nal is added to the fusion process due to the intrinsic properties of uninformative
signals. This robustness property is crucial for real-world applicability since the
uncontrollability of real environments can easily give rise to situations where
individual system-levels become uninformative. In such cases, attentional mod-
ulation must continue to be meaningful, otherwise misjudgments can occur with
potentially grave consequences.

We determine whether a modulation signal is informative by analyzing the
performance of its underlying system-level model. As can be seen from Fig. 21,
the system-level models for distance-to-free-area and elevation are much more
informative than the distance-based system-level model which is essentially at
chance level. System-levels for position/size are informative as well (not shown)
but show inferior performance. The experiments of Sec. 3.4 suggest that com-
bining informative modulation signals increases performance beyond the level
achieved by individual attentional modulation signals: this is especially the case
for stream V where one can observe an improvement due to the fusion process
even though the individual modulation signals (especially the distance-to-free-
area) achieve unsatisfying results by themselves.

Application to different object detection mechanisms By applying at-
tentional modulation to a simple symmetry-based detection mechanism, we
could show that the proposed mechanism of learned attentional modulation
is applicable to very different object detection methods with beneficial results.
The detection method need not even be specific to the object class of interest
(just as symmetry detection is not a really good car detector, see Sec. 3.5); in
such cases, the object specificity is almost exclusively due to the influence of
attentional modulation. The only requirements are the existence of a (possi-
bly multiscale) confidence map with retinotopic organization and a competitive
hypothesis selection process, e.g., as described in Sec. 2.7. As a consequence,
the described learned attentional modulation can be expected to work well with
saliency maps[16] or other low-level point detectors.

Benefit of early modulation As can be clearly seen from Sec. 3.6, the late
rejection approach is moderately inferior for H = 40. For H = 10, however,
the difference is very pronounced, especially considering the achieved values
on the recall axis. This is a very important result when considering object
detection in autonomous agents usually facing severe computational constraints.
In order to ensure that this effect is really due to the beneficial influence of
attentional modulation, it must be established that the reported performance
gain is not simply due to superior performance of the system-level models as
compared to the MLP. In order to clarify this, we compare the classification
performance of the individual system-level models to the performance of the
trained MLP. System-level models perform two-class discrimination and can
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therefore be evaluated by ROC analysis. As can be seen from Fig. 22, even
the best system-level model does not approach the classification performance
of the MLP. We conclude that superior object detection performance occurs
because the modulated classifier has access to more information: it can use
both system-level and detailed retinotopic information, whereas the MLP can
just use system-level information.

Bootstrapping The results of Sec. 3.3 show that attentional modulation de-
rived from bootstrapped system-level models yields results that are significantly
superior to those obtained without modulation. At the same time, performance
is only slighty inferior to the performance achieved by using system-level mod-
els trained on ground-truth information. For the purposes of this article, suc-
cessful bootstrapping implies that our system is capable of fully online opera-
tion without requiring ground-truth data for training at run-time. Obviously,
ground-truth data is still required for training the classifier, but but the addi-
tional ground-truth data required for training successful system-level models is
avoided. A systematic comparison and an in-depth analysis of the benefit of
bootstrapping will be given in a subsequent publication (but see [21, 29]).

4.2 Online learning capability

As the term ”online learning” is used in various ways in the literature, we wish
to give a precise definition here before we discuss the presence of this property
in our system. We assume the following properties:

1. The total number of training examples does not have to be known at any
point during the system’s run-time.

2. Each training example is seen only once

3. Learning is performed using only information that is (or would be) avail-
able to a performing system. This specifically excludes the use of an-
notated data at run-time, whereas the use of annotated data prior to
run-time is of course acceptable.

Without considering bootstrapping, our system fulfills only the first two con-
ditions. Although, by the choice of the learning rate constant ε, a time scale
is defined after which previously presented examples are slowly forgotten, this
does not contradict the stated requirements. Moreover, forgetting only occurs
if a training example is not reinforced by similar ones. When taking bootstrap-
ping(see Sec. 3.3) into account, also the third requirement is fulfilled. In this
configuration, annotated data is only used for training the appearance-based
classifier which occurs prior to the run-time of the system. We therefore con-
clude that the presented system is indeed capable of performing online learning,
enabling it to run and learn in a ”live” system once processing speed has been
optimized sufficiently.
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4.3 Comparison to related work

There are several differences of our work to the literature discussed in Sec. 1.3.
First of all, most investigations do not share the symmetry between training
and evaluation our system exhibits. Mostly, system components or prior dis-
tributions are trained offline and separately, and are later connected by either
probabilistic inference or heuristic coupling. In contrast, we present a system
which obtains all required training information while running. As a consequence,
training and evaluation of system-level models can be assumed to operate on
similar underlying probability distributions: in this way, the common effect that
heuristically chosen training data (e.g., negative examples) are actually different
from evaluation scenarios cannot occur. Furthermore, the learned system-level
models are not purely visual but multimodal in nature and are derived from
object properties with powerful semantic meaning, such as an object’s distance
to the obstacle-free area ahead of the agent, or an object’s height above the
computed ground plane. We thereby go beyond many approaches which use
straightforward visual object properties like pixel size, pixel position, color a.s.o.
We also present an example of successful bootstrapping of models for attentional
modulation, showing that a system can perform successful online learning if a
self-supervision signal of sufficient quality is available. Additionally, we present
an investigation which shed light on a previously disregarded aspect of atten-
tional modulation, namely the benefit compared to ”late coupling” approaches
that eliminate inconsistent detections only at the end of a processing chain.
Lastly, the presented system differs from related work by its large-scale eval-
uation using continuous and variable traffic video sequences. Some authors[3]
use extensive evaluation datasets like the PASCAL data but the focus is not on
recognizing relevant classes in road traffic scenes, but to recognize and discrim-
inate a large number of object classes in arbitrary scenes. Other authors[13]
evaluate performance in traffic scenes but with evaluation sets that are much
smaller than ours.

When comparing our system to [2, 9, 10], it is obvious that the modeling
of cortical interactions is much more restricted since we focus strongly on the
modeling of abstraction hierarchies. Functionally, we use a simplified competi-
tion mechanism at hypothesis level (see Sec. 2.7) which clearly does not capture
the details of a fully neuro-dynamic approach (hysteresis, latency behavior, ..).
However, this simplified mechanism still converges to attractor states which are
non-trivially influenced by attentional modulation signals. Thus, while gaining
computational efficiency and simplicity, our system is able to make use of the
computational power of the biased competition mechanism. Furthermore, the
model of [10] considers only the learning of a single object search template; this
is in contrast to our approach where a large number of examples are processed
to generate a detailed but general system-level model that can be inverted for
detecting the target object class. This point applies equally to [2] where learning
is not considered at all, and an even more strong focus is given to the network
dynamics and biological plausibility.

Approaches based on high-level semantic models such as [25] use models
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of higher abstraction and complexity than our system with impressive results.
The key difference is that such models are designed not learned, and a rigorous
evaluation in real-world environments is not targeted.

In contrast to Selective Tuning models [30, 33] where attentional feedback
is propagated through multiple hierarchy levels, attentional modulation is only
propagated to the intermediate level of the presented system. We did not im-
plement further feedback propagation since the algorithms at the preprocessing
level are, at present, not suited to deal with this information. Similarly to Selec-
tive Tuning, we use winner-takes-all interactions and, effectively, an inhibition-
of-return mechanism at the hypothesis level.

Top-down attention approaches such as [6, 23] differ from our work by the
way of acquiring models. Although these authors present integrated systems
using object specific attentional modulation, such modulation is obtained by
performing an offline optimization based on heuristically defined positive and
negative examples. The authors describe evaluations in indoor scenes[6] and
traffic environments[23] although the number and diversity of annotated images
is much lower than in the presented work, especially for indoor evaluations.

Very closely related to our work is the work by [13] which aims at reconstruct-
ing 3D scene geometry from monocular images; such geometric information is
then used to guide exhaustive object detection mechanisms. In contrast, we
use information about 3D scene layout directly obtained from advanced stereo
processing; on the other hand, our system does not perform Bayesian inference
to determine the most likely 3D scene layout since we rely on the quality of our
stereo information. Additionally, our system is able to process and train models
using various quantities not related to 3D scene layout, such as distance-to-free-
area, image position/size and many more (color, texture, aspect ratio which
were not shown because their influence on performance was not significant). An
evaluation of car and pedestrian detection performance in images of outdoor
traffic scenes is given in [13], although the number of annotated images and
objects is much smaller than in our evaluation.

Similarly to [13], the work of [24] uses global scene properties to infer posi-
tions and sizes of objects; however in contrast to [13], this is an unidirectional
process where the position of objects cannot influence scene property estimation.
In [24], a low-dimensional scene descriptor (”gist”) is computed and used for
object training models that relate the positions of certain object classes to the
current gist value. Using a small training and evaluation set of indoor/outdoor
scenes, performance improvement is demonstrated w.r.t. exhaustive object de-
tection. This is similar to our approach, although our evaluation datasets are
much larger, and we employ a larger number of models that inform object de-
tection about the likely positions and sizes of objects.

Another interesting approach to attentional modulation is presented in [36];
as in our work, the influences of multiple models are fused using probabilistic
inference to obtain attentional modulation. Used models are: prior distribu-
tion over object positions, visual conspicuity computed by a saliency map and a
model computing the location where the greatest information gain given previ-
ous detections may be obtained. In addition, another topic also discussed here
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is raised: accuracy of object detection using only a limited number of object
hypotheses (there called ”gaze targets”). The authors show that, using their
method with a limited number of gaze targets, the performance of exhaustive
object search can be approached in indoor scenes. We obtain exactly this result,
although our evaluation is considerably more extended and the detection task
of finding cars in cluttered outdoor scenes is, to our mind, a more challenging
one.

The method put forward in [3] proposes a generic framework for spatial
inter-object influences in object detection. In contrast to our system which
uses heuristic non-maxima suppression (NMS) to reduce the number of object
hypotheses, the authors of [3] train discriminative models for performing this
task in a way that is learned from data. It is notable that this framework is also
capable of enhancing object hypotheses; this is in contrast to our NMS method
which can just suppress. In our investigations, we heuristically determined
certain parameters in the NMS of Sec. 2.2 that are beneficial for detecting cars,
so we can confirm that the optimization of NMS can indeed improve detection
performance.

5 Summary and future work

We presented a large-scale integrated processing system performing object de-
tection in challenging and diverse visual environments. It is our conviction that
the presented system is unique in enhancing object detection by space- and
feature-based attentional modulation that is autonomously trained within the
system, as well as a rigorous evaluation of real-world performance.

Future work will include the investigation of attentional modulation signals
with higher object specificity, as well as space-based attentional modulation
based on more behavior-centered spatial representations. We will continue eval-
uating our research based on real-world data while considering more task-specific
ways of evaluating detection performance. As a last point, we will conduct fur-
ther investigations regarding the possibilities of bootstrapping, especially w.r.t.
the minimal quality an object detector must achieve for successful bootstrap-
ping.
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Figure 6: Size-dependent population encoding of hypothesis position. A) Em-
bedding into processing system. B) Hypothesis size determines the nonzero
level in the pyramid of population codes z0

i (~p).

Figure 7: Examples of stereo processing for elevation and distance calculation.
A) embedding into processing system B) video image with object hypothesis
C) dense elevation map F 2(~x), similar to distance map F 3(~x). D) population-
coded elevation z2(~p) resulting from this measurement. An analogous processing
generates population coded-distance z3(~p). Such population codes may be more
or less strongly multimodal, thus reflecting the uncertainty of the associated
measurement.
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Figure 8: Competitive hypothesis selection in a resolution pyramid of confidence
map produced by the appearance-based classifier. Maxima in the confidence
maps (right) correspond to object hypotheses defined by rectangular areas in
the input image (left). As indicated, a maximum with high confidence inhibits
its neighborhood region across all scales.

Figure 9: Typical effects of attentional modulation on classifier. A) Embedding
into processing system. B) Sample input image. C) confidence map of classifier
at scale 5. Note the strong (but incorrect) maxima indicated by the ellipse and
the arrow. D) Top-down modulation image at scale 5. E) Modulated confidence
map. Note that the local maxima indicated by the arrow and the ellipse have
been merely attenuated; especially the maximum indicated by the arrow may
still be selected since there are no competing maxima nearby. In contrast, local
maxima close to the upper border of the image have been almost eliminated.
Selection behavior depends strongly on the number of allowed hypotheses, H ,
and the selection threshold θ.
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Figure 10: System-level learning of object models. A) Embedding into process-
ing system B) Encoding of system-level quantities at the hypothesis level. C)
Learning of the mapping between object identity and population-coded system-
level quantities. Note that both directions of the mapping are learned, i.e.,
one can determine the expected identity given a feature, but just as easily the
expected feature distribution given an identity. The latter case is used for gen-
erating attentional modulation.
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Figure 11: Generation of object-specific attentional modulation. A) Embedding
into processing system B) Learned reverse mapping from an object identity rep-
resentation (the search cue) to population-coded feature value distributions. C)
Decoding of the population-coded feature value distributions. For all features
except xy-position, this involves a ”cutting” of the population code along the
line indicated by the gray dashed arrows. D) Generation of individual atten-
tional modulation maps. For all features except xy-position, this involves a
lookup operation, substituting values found in individual feature maps by cor-
responding confidence values from expected distributions generated in step C.
E) Fusion of modulation maps by simple addition and normalization.
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Figure 12: Fusion of space- and feature-based modulation signals. A) Embed-
ding into processing system. B) Normalization and summation of feature-based
attentional modulation signals. C) Duplication across scales D) Summation of
multiscale feature- and space-based modulation signals with subsequent maxi-
mum normalization. The resulting multiscale modulation map therefore fulfills
mi(~x) ∈ [0, 1]∀i∀~x.

Figure 13: Selected example images from streams I-V. All videos were taken in
RGB color using a MatrixVision mvBlueFox camera at a resolution of 800x600.
Used frame rates were 10Hz except for video II where a setting of 20Hz was used.
Aperture was always set to 4.0 except for video IV where we used a value of 2.4.
A self-implemented exposure control was used on both cameras, manipulating
the gain and exposure settings of each camera.

32



Figure 14: Examples of recorded streams and annotated information. Each
annotation consists of a rectangular area, an identity and an occlusion value
(not shown). In order to reduce the annotation effort, only every tenth image in
a video sequence was annotated. We annotated positive examples for a number
of different object classes. Since this study focuses on vehicles, we ensured that
really all vehicles present in a given image are covered by an annotation. As
can be seen from the images, we use what we term semantic annotations, which
means that is has been tried to mark the whole area containing an object even
if it is partially occluded.

Figure 15: Example of single-image performance evaluation. A) Hypothesis
matching an annotation (true positive case) B) hypothesis not matching any
annotation in the current image (false positive case) C) annotation matched by
one or more hypotheses D) annotation not matched by any hypothesis (false
negative case) E) annotation that is not considered due to size constraints, see
text. Such annotations do not constitute a false negative case when matched
by a hypothesis, but neither a true positive case otherwise.
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Figure 16: Assessment of performance improvement by attentional modulation
for video streams I-V by ROC-like plots. The dashed green curves give the
performance of the appearance-based classifier without attentional modulation,
the solid red curves show the performance when using attentional modulation.
System-level models were trained on streams I-III using blocking. A clear im-
provement can be observed for all streams.

Figure 17: Assessment of generalization performance of top-down modulation
using stream II,IV,V. System-level models were trained on stream I,II,III (base-
line) and on stream III, both times using blocking. Results were very similar
in nature on streams I,III (not shown). Solid green curves: appearance-based
classifier without modulation. Solid red curves: appearance based classifier
using attentional modulation trained on streams I,II,III. Dashed green curves:
appearance based classifier using attentional modulation trained on stream III.
As can be seen from the plots, training system-level models only on stream III
does not affect performance significantly in any direction.
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Figure 18: Performance comparison of attentional modulation using boot-
strapped and annotated training (stream I not shown). Dashed green curves:
plain classifier performance without attentional modulation. Solid green curves:
effects of attentional modulation trained on streams I+II+III. Red curves: ef-
fect of system-level models trained on streams I+II+III using bootstrapping.
Performance using bootstrapped training is very similar to annotated training
and markedly superior to the ”plain” classifier (except on stream IV).
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Figure 19: Improvement of detection performance by the fusion of attentional
modulation signals. For space limitations, we show only streams I, III,IV. Upper
row: effect of fusing informative modulation signals on detection performance.
Solid red curves (”el”): elevation only, solid green curves (”d2fa”): distance-to-
free-area only, dashed green curves (”el+d2fa”): fusion of distance-to-free-area
and elevation, dotted blue curve (”all”): fusion of position/size (not shown),
distance-to-free-area and elevation signals. In streams I and IV, good perfor-
mance is mainly obtained through the elevation signal. In stream V, the free
area computation often fails due to laser reflections, resulting in meaningless
distance-to-free-area measurements and impaired elevation measurements. As
can be seen, the fusion of modulation signals makes performance robust against
failure (documented by poor distance-to-free-area performance) or deterioration
(documented by impaired elevation performance) of individual modulation sig-
nals. Lower row: robustness of the system against addition of uninformative
modulation signals. The inclusion or omission of the distance-based modulation
signal only has a negligible effect. Solid red line (”all+dist”): detection perfor-
mance when using distance-to-free-area, elevation, position/size and distance.
Dotted blue line (”all”): detection performance when omitting distance.
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Figure 20: Left graph: Effect of attentional modulation on symmetry-based
object detection. Dashed green curve: symmetry-based detection without mod-
ulation. Solid red curve: symmetry-based object detection with attentional
modulation. Dotted blue curve: appearance-based classifier without atten-
tional modulation (for comparison). As can be seen, attentional modulation
improves the almost chance-level performance of symmetry-based car detec-
tion to a level close to the much more powerful appearance-based classifier.
Right two graphs: Comparison of early modulation and late rejection ap-
proaches under moderate (H = 40) and strong (H = 10) resource constraints,
shown for streams I and III. Solid curves: attentional modulation with strong
(blue curve) and moderate (gray curve) constraints. Dashed curves: late re-
jection with strong (blue curve) and moderate (gray curve) constraints. Please
observe the marked difference between resource-constrained object detection
performance using attentional modulation (solid blue curve) or late rejection
(dashed blue curve). Especially on the recall axis, the late rejection approach
achieves a much poorer performance when simulating constrained resources.
This effect was observed also on streams II,IV and V (not shown).

Figure 21: Checking system-level models for overfitting. We compare perfor-
mance of system-level models evaluated on disjunct training and evaluation
sets from stream I. Left: performance on training set. Right: performance on
evaluation set. Training set performance is somewhat superior but significant
performance is still achieved on the evaluation set. In case of overfitting, the
performance on the evaluation set should differ much more strongly.
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Figure 22: Direct comparison of system-level models and MLP classifier per-
formed on evaluation set from stream I. Left: multilayer perceptron using
population-coded distance, elevation, size and distance-to-free-area as input.
Right: Individual system-level models for each feature, see Sec. 2.8. MLPs
performance is slightly superior overall which is unsurprising since it is three-
layered, can use nonlinearities and combines all its input features. In contrast,
the system-level models directly map each population-coded input to object
identity (no combination). Training and evaluation of MLP and system-level
models was performed as described in Sec. 2.11.
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