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Abstract. This work investigates the role of color in object recognition.
We approach the problem from a computational perspective by measur-
ing the performance of biologically inspired object recognition methods.
As benchmarks, we use image datasets proceeding from a real-world
object detection scenario and compare classification performance using
color and gray-scale versions of the same datasets. In order to make our
results as general as possible, we consider object classes with and with-
out intrinsic color, partitioned into 4 datasets of increasing difficulty and
complexity. For the same reason, we use two independent bio-inspired
models of object classification which make use of color in different ways.
We measure the qualitative dependency of classification performance on
classifier type and dataset difficulty (and used color space) and compare
to results on gray-scale images. Thus, we are able to draw conclusions
about the role and the optimal use of color in classification and find that
our results are in good agreement with recent psychophysical results.

1 Introduction

The use of color information in object recognition remains to this day a contro-
versial issue, both from the point of view of psychologists and computer scien-
tists. Although much experimental work has been done on the subject in psy-
chophysical science, the results are sometimes contradicting or inconclusive: early
works [1, 2] proposed ”shape” theories of object recognition, claiming that color
is an irrelevant feature for recognition. In contrast, more recent investigations
[6, 17, 13] seem to show that color does improve recognition(”shape+surface”),
especially when objects have so-called diagnostic, i.e., class-specific intrinsic col-
ors. To our knowledge, however, there are no experiments that investigate the
validity of both theories using realistic objects in cluttered real-world scenes.

In computational implementations of object recognition systems, the use of
color information is not too common. Instead, many object recognition systems
are restricted to the use of shape information (e.g., gradients, local orientation
or wavelet representations). Reasons for this are manifold: first of all, the use
of color information triplicates the amount of data that needs to be processed.
Furthermore, color is an ambiguous cue: its optimal representation should always
depend on the task at hand. Hence, little consensus exists about the features that
should be extracted from color information, and therefore the use of color always



poses quite complex design questions which one would rather avoid if possible.
Lastly, the fact exists that recognition on gray-scale images has been shown to
perform successfully in a wide range of domains and applications, so it could be
argued that further improvement is not necessary.

In this study, it is investigated whether the use of additional color informa-
tion improves accuracy in a challenging real-world classification task, and if so,
under what circumstances. Obviously, not all outcomes of such an experiment
will allow definitive statements about the issue at hand. However, we believe
that unambiguously identifying a classification problem where color does make
a difference would be quite worthwhile in itself and allow to draw meaningful
conclusions. Assuming that recognition in the human brain is at least as good as
the computational models tested here, one may safely conclude that the human
brain could profit still more. In addition to theoretical considerations, this paper
should give indications if and how color information can best be used to improve
performance in challenging computational classification tasks.

1.1 Related work in computational object recognition

Interestingly, the number of proposals for object recognition architectures that
can use color information is relatively small. Two principal approaches can be
tentatively discerned: color histogram and receptive field methods. The color
histogram technique was triggered by [12] and followed up by many researchers.
Here, color histograms of objects are compared by using dedicated histogram
metrics. This approach is powerful and highly invariant to noise and geometric
distortions like rotation, occlusion and translation, but does not analyze the
spatial structure of objects at all. In contrast, receptive field methods analyze
an image by means of spatially localized convolution filters, followed by further
processing or direct classification of the obtained information. Convolution filters
can directly combine information from different color channels. This approach
preserves some of the spatial structure of an object and exhibits invariance to
noise and distortions that strongly depends on the convolution filters that are
being used. A prominent publication in this direction is [5]. Both approaches,
color histogramming and receptive field methods, have also been successfully
applied to recognition in gray-valued images. It has been attempted to combine
these two techniques theoretically [11] and in a working recognition system [8].
The system presented in [8] is especially interesting since it uses a very large
number of visual features including color and, in contrast, a very simple classifier,
suggesting that classification works best when combining as many informative
features as possible. The classifiers tested in this study use an adaptive receptive
field approach since the geometrical structure of objects must be taken into
account. We know, of no study that systematically tests the usefulness of color
information using real-world classification problems and large datasets of objects.



2 Datasets

The classification problem considered in this study originate from a car classi-
fication task within a comprehensive cognitive architecture for advanced driver
assistance [9]. The architecture contains modules for (real-time) detection, seg-
mentation, classification and tracking of objects in colored real-world traffic video
scenes. Using the architecture, several datasets of increasing difficulty were cre-
ated, and different steps to encode the color information were performed for each
set.

Experiments are conducted for all color representations of each dataset. The
goal of classification was to discriminate cars from background objects or object
parts (e.g., trees, parts of the horizon, lane markings, guardrails a.s.o.) Since
cars do not usually possess a single diagnostic color, and in order to make the
classification task still harder, a second object class ”signal board” was added.
These objects were abundant in some training videos and pose a strong challenge
for any classifier since they cannot usually be segmented correctly due to occlu-
sion. In addition, signal boards in Germany have a standardized appearance of
diagonal red and white stripes and thus possess unique diagnostic colors, which
makes them interesting for this study.

The binary classification problem of car against background is therefore ex-
tended to a multi-class problem. This is desirable since the classification task is
thus less specialized than a purely binary object-against-background-classification
would be. In this way, we expect that the results are more easily generalizable3.
In the following sections, we will describe steps that were taken in order to
increase the generality of the scenario still further.

2.1 Data generation and levels of difficulty

Initially, the architecture described in [9] was used to generate object candidates
from several hours of highway and inner-city traffic videos. By visual inspection,
datasets of car, signal board and clutter (not belonging to the ”car” and ”signal
board” classes) object images were selected. Object candidates are resized to a
common size of 64x64 pixels, and all datasets described below contain images of
these dimensions. For the selection of car objects, different criteria were applied
to obtain different datasets of object images. For details please consult table 1.
Example objects from different datasets are shown in fig. 1.4

2.2 Color representations

By default, the color representation in computer graphics is RGB. Due to the
inherently ambiguous nature of color, different color spaces may be used that
are tailored for special purposes and circumstances, and indeed a multitude of
other color spaces has been proposed. We focus on color spaces that try to

3 although, of course, there is no practical way to prove this
4 All datasets are available online from www.gepperth.net/alexander/downloads.html



dataset nr of examples description

I 574 single back-view of a whole car,
fills at least 25% of image

II 949 like I, plus front-views
III 1462 single view of a car(back/front), 50% of car must be in image,

filling at least 25% of image
IV 1748 not restr. to single view, 25% of car must be in image,

filling at least 25% of image
Table 1. Information about the datasets used in this study. Since the criteria are
progressively relaxed from dataset I to IV, each preceding dataset is contained in all
successors: I ⊂ II ⊂ III ⊂ IV. For all datasets, 4766 non-object(clutter) images and
537 signal board images were used.

match human color perception as closely as possible, like the CIE La
∗
b
∗ color

space[10] which was designed just for this purpose. We therefore perform the
experiments in this study using the RGB, HSV and the polar CIE La

∗
b
∗ color

spaces concurrently. HSV is a standard computer vision color space which is
included for comparison because of its simple and efficient transformation rules.
The details of the color space transformations can be found, e.g., in [10].

2.3 Error measures

Since the number of training examples is relatively low, all results are verified
by k-fold cross-validation. In k-fold cross-validation, the data is divided into k

subsets of equal size. One of the k subsets is then retained as the validation
dataset for testing the classifier and the remaining k − 1 subsets are used as
training data. The cross-validation process is then repeated k times, with each
of the k subsets used exactly once as validation set to compute the classification
error. The k classification results are averaged to produce a single classification
error. The classifier is then trained k times, each time leaving out one of the
subsets from training and using it to compute the classification error. Note that
cross-validation is quite different from ”split-sample” or ”hold-out” method that
are commonly used in machine learning. In the split-sample method, only a
single subset (validation set) is used to estimate the generalization error, instead
of k different subsets, i. e. there is no crossing. The distinction between cross-
validation and split-sample is extremely important because cross-validation is
markedly superior for small data sets. This fact is demonstrated in [4]. In this
study, a value of k = 5 is chosen in order to have a minimum of 100 car and
signal board objects in the test set. For each partitioning of a dataset, a receiver-
operator characteristic (ROC) is computed and used to obtain an average ROC
over 5 partitionings, which is taken to represent the outcome of an experiment
for a particular dataset. For reducing a ROC to a single number, we consider
the equal-error condition where the false positive (non-object examples that are
classified as object) and the false negative (object examples that are classified
as non-object) rates are identical.



Fig. 1. Typical color object images from datasets I through IV. Top row: car images
from dataset I (4 leftmost images) and dataset II (4 rightmost images). Second row:
signal board examples, identical in all datasets. Third row: car images from dataset III
(4 leftmost images) and dataset IV (4 rightmost images). Bottom row: clutter objects,
identical in all datasets. Keep in mind that each dataset contains its predecessors; the
shown images illustrate, for each dataset, the kind of objects that are added compared
to the preceding dataset. Note that color images are reproduced in gray-scales on paper.

3 Classification methods

Since it is impossible to test all available classification architectures, we select
two models which have been shown to be of value for visual classification tasks:
the Visual Hierarchy (VH) [16] and the SCNN [3] classifiers.

Both models differ in the way color is handled: whereas VH extracts form
features from a gray-valued version of its input and uses spatially coarse color in-
formation only at its last classification stage, SCNN integrates color information
from the beginning5, and no explicit separation between intensity (gray value)
and color is made (see fig. 3 for details). Both approaches may be justified or at
least made plausible, and one purpose of this paper is to give support to one or
the other approach if possible. In this way, hints about the most efficient use of
color in computational object classification may be arrived at.

To all intents and purposes, the description of the classification models could
stop more or less here, and the less technically inclined reader may skip the rest
of this section. In the following, a more detailed account of the working of both
models is given.

Both the VH and the SCNN model are convolutional neural network (CNN)
models [7] in the sense that they can perform whole-image classifications us-
ing block operations, i.e., operations that treat each image pixel independently

5 SCNN was initially conceived to handle intensity information only, but the extension
to color is trivial and is discussed later in this section.



Fig. 2. Classification models used in this study. Left: the VH processing model as
described in [16]. The C2 layer calculates 53 features. Right: the SCNN model as
described in [3]. 49 filters are applied to the input layer instead of 16 as in the best-
performing model given in [3]; this number matches the 53 features of the VH model
quite closely. For both models, the input dimension is set to 64x64 pixels. For extensions
to both models that are considered here, please see fig. 3.

of its position. The operations are mainly convolutions with filters determined
by learning algorithms, but also other operations like subsampling, pooling or
competitive mechanisms. Both classification models define unsupervised learn-
ing rules for determining well-suited convolution filters. In this way, both models
are able to compute a (possibly high-dimensional) feature space which is unique
to each classification problem. The final supervised classification takes place in
that feature space.

Both models allow a large number of architectures to be formed by varying
layer numbers and sizes, transfer functions, filter sizes a.s.o. Since it is not the
goal of this study to perform an in-depth comparison of the two models, they
will be taken in the form they are used in recent publications [3, 15]. The SCNN
model is (trivially) extended to allow the use of color information . In order to
reduce computational complexity, and to mimick the pooling stages of the VH
classifier, the training examples are resized to a size of 25x25 pixels for use with
the SCNN model. In this way, SCNN can be used in the same configuration as
in [3]. Fig. 2 shows the computational architecture of both models.

3.1 Extending SCNN in order to use color

In order to apply the SCNN model to vector-valued pixels (as is the case for color
images), a simple procedure is applied: each pixel is simply substituted by all
vector entries arranged consecutively. In this way, the x-dimension of an image
is extended by a factor of N (where N is the dimension of each pixel vector, here
N = 3) while the y-dimension is unaffected. Care must be taken when choosing
the SCNN structure: input layer filters must always come to start on a pixel



boundary; this can be ensured by a correct choice of filter sizes and overlaps.
Otherwise, the image thus constructed is treated as a gray-valued image, and the
normal SCNN training algorithm can be applied. Fig. 3 gives a visual impression
of this process.

Fig. 3. Right: VH architecture for classification of color objects as described in [15].
The C2 layer is extended to include 3 additional feature maps formed from the down-
sampled R,G and B color channels. The C2 layer is thus constructed from 53 maps.
Left: extension of the SCNN model to handle vector-valued RGB input pixels. As ex-
plained in the text, each RGB triplet is represented by 3 pixels extended into the x
direction. The input is thus 3 times larger than in the gray-value case. Correspondingly,
the x-dimension of filters in the input layer is tripled to 15 pixels. The classification
layer consists of 16 feature maps.

3.2 Adapting VH to different color representations

In the RGB color representation, VH calculates an intensity value from the RGB
data and uses the intensity image for calculating a task-optimized feature space.
When going to the HSV and La

∗
b
∗ color spaces, a slightly different approach is

used: the Value (V) and the luminance (L) are used for calculating the feature
space when using these color representations. Instead of downsampled R, G, and
B maps, the downsampled S, V maps in the case of HSV and a

∗, b
∗ maps in the

case of La
∗
b
∗ are added to the C2 layer. Therefore, the C2 layer comprises only

52 instead of 53 (for RGB) feature maps in these cases.

4 Experiments

Experiments are conducted for the gray-scale, the RGB, the HSV and the La
∗
b
∗

representation of datasets I through IV using the VH and the SCNN classification
methods summarized in section 3. This gives a total of 16 experiments for each



Dataset Gray-valued RGB HSV pLa
∗

b
∗

I 5.3 4.7 5.3 4.6
II 5.0 4.8 5.8 4.0
III 9.5 6.7 9.5 6.5
IV 11.1 8.0 11.1 7.6

Dataset Gray-valued RGB HSV pLa
∗

b
∗

I 6.3 8.4 8.1 8.4
II 7.0 9.8 10.0 9.6
III 9.1 12.5 11.2 12.4
IV 11.2 14.0 13.9 14.9

Table 2. Classification errors for cars. Left table: VH classifier, right table: SCNN
classifier. All numerical values are given in percent.

Dataset Gray-valued RGB HSV pLa
∗

b
∗

I 11.0 9.3 7.3 10.9
II 10.8 9.8 7.5 10.9
III 11.4 9.8 7.8 11.8
IV 11.1 9.8 7.8 11.4

Dataset Gray-valued RGB HSV pLa
∗

b
∗

I 11.3 13.3 14.1 12.9
II 10.7 13.9 15.0 14.2
III 11.6 13.3 13.7 13.8
IV 11.2 14.1 14.0 13.4

Table 3. Classification errors for signal boards. Left table: VH classifier, right table:
SCNN classifier. All numerical values are given in percent.

classifier model. Results were obtained according to section 2.3, using datasets
described in section 2.

5 Results

As the tables 2 and 3 plainly show, the use of color can improve (VH model) or
impair (SCNN model) classification for both object classes. In the rest of this
section, we will discuss the improvements obtained by using the VH model.

5.1 Results for cars

As expected, classification performance deteriorates when going from dataset I
to dataset IV. The relative improvement increases, suggesting that color is more
useful when the classification task is harder.

5.2 Results for signal boards

Since the signal board object class does not differ across datasets, the differences
in classification performance are quite small. The differences spring from the fact
that a more complex car class can be more easily confused with signal boards. In
fact, it is surprising that classification performance is not improved more clearly
by the use of color given the fact that signal boards have a clearly defined
diagnostic color. This can be easily understood when considering that the main
source of confusion are cars and not clutter objects. Preliminary experiments
where only signal boards had to be distinguished from clutter indeed showed a
far stronger performance difference between gray-scale and color images.



6 Discussion

As a leading remark, we want to state that we have not addressed the difficult
issue of color constancy in this article. We are well aware of this fact: the reason
we do not believe it plays a role here is that we do not perform object identi-
fication but rather categorization with few categories and many objects. As we
expected and as was shown, the classifiers are able to generalize sufficiently in
order to deal with this problem.

As the results plainly show, the use of color improves classification perfor-
mance for all datasets when using the VH model. In the case of the SCNN model,
results tend to deteriorate when switching to color images. These findings per-
sist, although to different degrees, when treating the problem using different
color spaces, suggesting that the color space should always be adapted to the
classification task as mentioned in the introduction.

For the signal board class with its clearly defined diagnostic color, the im-
provements are stronger than for cars but not as strong as one would naively
assume. As explained before, this is likely due to confusions with car objects
which can have similar colors; when leaving out the car class, the classification
of signal boards improves more strongly by using color.

What can be learned from these results? First of all, one can infer conclu-
sions about the preferable way of using color in computational classification.
Generally speaking, results are roughly comparable for gray-valued images but
get markedly better for color images using the VH model, whereas they deterio-
rate for the SCNN model. This effect persists over all color spaces and difficulty
levels, suggesting that it is systematic: the way color is used in the VH model
(see section 3) seems to be more appropriate to the presented task. Although it
cannot, from these results, be concluded in all generality that this is a preferable
way of using color, it may be concluded that it is a very sensible starting point
when going from gray value to color classification.

Secondly, one can use these results to argue against ”shape only” theories of
object recognition. Based on the classification results, we cautiously argue in the
line of [14], where experimental evidence for a ”shape+surface” representation in
object classification is reviewed. In contrast to many experimental results which
suggest ”shape only” representations, we believe (based on our results) that color
is especially relevant in realistic, cluttered and visually noisy environments. It
should be kept in mind that many related experiments were performed under
idealized conditions, and that line drawings and images on white backgrounds are
not abundant in natural scenes. What is more, recalling the discussion from the
previous paragraph, we argue that it is sufficient to represent color as an overall
object feature with little spatial structure. Thus, the dimensions for color and
shape are well separated: it may be be that color plays some role in the definition
of shape, but this study suggests that it is used mainly at a quite abstract level
for purposes of overall object class separation.
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