
Neural learning methods for
visual object detection

(Neuronale Lernverfahren zur
visuellen Objekterkennung)

Dissertation

zur Erlangung des Grades
”Doktor der Naturwissenschaften”

an der Fakultät für Physik und Astronomie
der Ruhr-Universität Bochum

vorgelegt von
Alexander Rainer Tassilo Gepperth

am 19.April 2006

Datum der Disputation: 5.7.2006

Gutachter: Prof. Dr. Gregor Schöner und Prof. Dr.
Christoph von der Malsburg

1

Acknowledgments

This thesis summarizes the greater part of the work I did during my three
years at the Institute for Neural Dynamics in Bochum. Scientific work is a
collaborative effort; I am therefore indebted to many of my colleagues for their
friendship, inspirations, constructive criticism and help in practical matters. I
greatly enjoyed my time in Bochum because of the open and friendly atmosphere
at the institute, which made me feel at home almost instantly. Credits for this
must go to Prof. Werner von Seelen, the former head of the institute, and to
the current head Prof. Gregor Schöner.

Especially, I wish to thank Hannes Edelbrunner for his continuing support,
beer and inspiring midnight discussions, Christian Igel for valuable neural net-
work tips, and Michael Neef for making backups of all the files I could possibly
delete. I am grateful to Stefan Roth for good and reliable partnership in our
common projects, and our secretaries Ute Kopp and Angelika Wille for good
humor and help with university forms.

Furthermore, I wish to thank my proofreaders Britta Mersch, Thorsten Sut-
torp, Jan Salmen, Hannes Edelbrunner and Markus Mildenstein without whose
help this thesis would have been handed in half a year later (or, alternatively,
full of ”German English”). I wish to thank Britta Mersch for encouraging me
and believing in me during the last few uncomfortable months, and also for the
fact that she exists. Thanks go to my relatives Hanne and Hans Hambücher for
their continuing moral and material support.

This thesis is dedicated to my parents.

Contents

Introduction . 9

I Foundations 13

1 Basic techniques of digital image processing 14
1.1 The sampling theorem . 14
1.2 Image processing using convolution filters 17

1.2.1 General properties . 17
1.2.2 Convolutions of sampled functions 17
1.2.3 Image processing with discrete convolution filters 18
1.2.4 Practical considerations 19

1.3 High- and lowpass filters . 21
1.4 Bandpass filters . 21
1.5 Orientation-selective filters . 22

1.5.1 Gradient filters . 22
1.6 Rescaling of digital images . 23

2 Principal components analysis 27
2.1 Notation . 27
2.2 Basic concepts . 28
2.3 Solution methods . 29
2.4 PCA by neural networks . 30
2.5 Derivation of learning rules . 30
2.6 Nonlinear PCA . 31
2.7 Local PCA . 32

3 Object detection: selected approaches 34
3.1 Saliency-based object detectors 34
3.2 Object recognition and classification 36
3.3 Combinations of object classifiers and saliency-based detectors . 37
3.4 Whole-image search using object classifiers 38

3

II Own work 40

4 Feature design for object classification and detection1 41
4.1 Summary . 41
4.2 Introduction . 42
4.3 System architecture . 43
4.4 Image analysis and feature selection 44

4.4.1 Preprocessing . 44
4.4.2 Features for Classification 45

4.5 Generation of hypotheses . 47
4.6 Requirements a confirmation module 48
4.7 The confirmation module . 49

4.7.1 Training data . 49
4.7.2 Decision making . 49

4.8 Performance, benefits . 52
4.9 Conclusion . 53

5 Object detection with adaptive saliency maps 55
5.1 Summary . 55
5.2 Introduction . 56

5.2.1 Biological bottom-up scene analysis 56
5.2.2 Computational modeling of bottom-up scene analysis . . 56
5.2.3 Overview of the proposed model 57
5.2.4 Outline . 59

5.3 Saliency map architecture . 59
5.3.1 Modality-independent processing 59
5.3.2 Modality-dependent processing 60
5.3.3 Competition . 61

5.4 Learning . 61
5.4.1 Training data . 63
5.4.2 Fitness function . 63

5.5 Covariance matrix adaptation . 63
5.6 Test scenarios . 64
5.7 Performance evaluation . 65

5.7.1 Performance measures . 65
5.8 Results . 66
5.9 Discussion . 68
5.10 Technical details . 69

5.10.1 Downsampling filters . 69
5.10.2 Center-surround filters . 69
5.10.3 Steerable filters . 69
5.10.4 Gradient filters . 69

1Some of the content of this chapter has been published in: A. Gepperth, J. Edelbrun-
ner, and T. Bücher. Real-time detection and classification of cars in video sequences. In
Proceedings of the IEEE Symposium on Intelligent Vehicles, pages 625–631, 2005.

4

6 Object detection and feature base learning with sparse convo-
lutional neural networks2 71
6.1 Summary . 71
6.2 Introduction . 72
6.3 Classification problems . 72
6.4 Sparse convolutional neural network classifiers 74

6.4.1 Network model . 74
6.4.2 Learning in SCNNs . 76

6.5 A convolutional architecture for whole-image search 78
6.6 Feature base learning . 79
6.7 Experiments . 80

6.7.1 Off-line classification performance of single SCNNs 80
6.7.2 Feature base learning results 82
6.7.3 Online performance . 82
6.7.4 Learned –vs– designed visual features 82

6.8 Discussion . 83

7 Structure optimization of object classifiers3 85
7.1 Summary . 85
7.2 Introduction . 86
7.3 Optimization problems . 89

7.3.1 Face detection data . 90
7.3.2 Car detection data . 91

7.4 Optimization methods . 92
7.4.1 General properties of both optimization methods 93
7.4.2 Magnitude-based network pruning 94
7.4.3 The evolutionary multi-objective algorithm 95

7.5 Multi-objective performance assessment 100
7.6 Experimental setup . 101
7.7 Results . 102
7.8 Discussion . 103

8 Discussion and outlook 105
8.1 Applications . 105

8.1.1 Trainable initial detection 106
8.1.2 Initial detection of cars and traffic signs 106
8.1.3 Classification of lane borders 107

8.2 Opportunities for further research 108
8.2.1 Extensions of the SCNN model 108

2Some of the content of this chapter has been published in A. Gepperth. Visual object
classification by sparse convolutional networks. In Proceedings of the European Symposium
on Artificial Neural Networks (ESANN) 2006. d-side publications, 2006. accepted.

3Some of the content of this chapter has been published in: A. Gepperth and S. Roth.
Applications of multi-objective structure optimization. Neurocomputing, (69):701–713, 2006.
Design and implementation of the evolutionary multi-objective optimization algorithm and
the implementation of multi-objective performance measures was done by S.Roth.

5

8.2.2 Research of new unsupervised learning terms for the SCNN
model . 109

8.2.3 Comparison of designed and learned feature extraction
schemes . 109

8.2.4 Ensemble learning with members of Pareto fronts 109
8.2.5 Saliency-based object detection 110

Bibliography 113

6

Comments on notation and
abbreviations

For clarity’s sake, each chapter defines the abbreviations it uses even if they
were defined in previous chapters already. Some common abbreviations are

• NN – neural network

• MLP – multilayer perceptron

• ROI – region of interest

• CNN – convolutional neural network

• SCNN – sparse convolutional neural network

• DFT – discrete Fourier transform

• MOO – multi-objective optimization

• MSE – mean squared error

• CE – classification error

• CMA – covariance matrix adaptation

• SVM – support vector machine

• RF – receptive field

Mathematical notation is defined wherever it is required: some common con-
ventions are:

• Vectors are denoted by bold characters z and their components by super-
scripts: z1.

• Transposition of vectors is indicated by zT .

• The norm of vectors z is written ||z||.
• The imaginary number

√−1 is denoted i.

7

• The Kronecker symbol is denoted by δij and is nonzero only if i = j

• The two-dimensional delta distribution is denoted δ(x, y).

• The Fourier transform of a function is written in calligraphic letters: F(ω).

8

Introduction

Visual object detection and classification are tasks that are getting increas-
ingly important in everyday technological applications. Some examples are face
detection systems for video surveillance, video conferencing, advanced image
compression, traffic monitoring and advanced driver assistance systems.

Despite the apparent ease with which humans solve these tasks, they are
still challenging research topics, and human performance has not been reached
by a long way. Despite many interesting applications that could be realized
using object detection systems that equal human performance, the problem is of
considerable academic interest in its own right. Quite often, research is inspired
by visual information processing strategies in the human brain, requiring close
collaboration of scientists from psychology, neurobiology and computer science.
This thesis presents ways to incorporate the principle of adaptivity, which is
ubiquitous in the human brain, into different stages of the object detection
process.

Usually, object detection systems consist of three distinct processing steps:
initial detection, feature extraction and classification (see fig. 1). The initial
detection stage identifies regions which contain object ”candidates” (so-called
regions of interest—ROIs) using a variety of methods that usually depend on
the object class at hand. The obtained ROIs are then subjected to a feature
extraction step in which certain visual properties or features within the ROI
are computed. Again, the choice of features is usually task-dependent. As a
last step, a trainable object classifier is fed with the computed features and a
decision is made whether the content of an ROI is indeed an object belonging to
the desired class. Since initial detection has to scan a whole image for ROIs, it
is far more time critical than feature extraction or classification, because those
steps process only ROIs which are considered likely to contain objects by the
initial detection. Moreover, initial detection methods must cope with a very
large and complex problem class: distinguishing ”objects” from ”everything
else”. Especially the ”everything else”-parts of an image can exhibit strong
variability, and this a reason why initial detection is seldom perfect. Indeed,
perfect initial detection is not a requirement; it is only required that no objects
are missed, since missed objects cannot be processed by the subsequent stages
at all.

Summarizing the last paragraph, it can be stated that initial detection meth-
ods must solve hard classification problems in (usually) limited processing time.

9

Σ

Σ Σ Σ

Initial detection

Feature extraction

Classification

Figure 1: Standard architecture for visual object detection. The Σ characters
are meant to indicate that a mathematical transformation has been applied
to obtain visual object features. All details of this architecture are subject to
considerable variability depending on the area of application and the constraints
that must be met.

For this reason, initial detection is often not performed by fully trainable sys-
tems like support vector machines or neural networks, but by manually designed
methods tailored to suit only a certain object class, both for reasons of compu-
tational efficiency and classification accuracy.

Similar comments apply when discussing the feature extraction stage: many
models apply a fixed feature extraction designed to represent a certain object
class well. For example, when detecting cars, it is well known that strong
horizontal and vertical gradients are typical of this object class, so it makes sense
to design a feature extraction scheme that in some way reflects the strength of
these gradients in its output. It is known that suitable feature extraction can
improve classification accuracy significantly; unfortunately, the reverse is also
true: unsuitable feature extraction can make classification hard or impossible.

The decision whether an ROI actually contains an object or not is usually
taken by a trainable classifier. There are several possible methods that can be
used here, among them Linear Discriminant Analysis [36], Bayesian classifiers
[33], support vector machines [6, 13], neural networks in different variants [103]
or decision trees [9]. All these classifiers can be trained by supplying examples
which should define the unknown true classification function. In this thesis,

10

Σ

Σ Σ Σ

Evolutionary neural network
optimization

Speed, accuracy

Neural network learning

Automation

Neurally inspired learning

Automation

New neural network learning
method

Speed, generalization

Figure 2: Overview over the improvements to the object detection process pro-
posed in this thesis. Please compare to fig. 1 to get a clear picture.

object classifiers are always implemented by neural networks, although some of
the employed network models differ significantly.

Goals and outline

The work described in this thesis aims to improve several, sometimes comple-
mentary problems found in object detection and classification. Fig. 2 shows the
aspects of the object detection process to which this thesis makes contributions.

The investigation described in chapter 4 proposes an object detection ar-
chitecture similar to that sketched in fig. 1. It shows the possibilities but also
the problems (feature design, network design, initial detection design) that are
associated with this kind of architecture. Each of the following chapters makes
contributions towards improving a certain component described in chapter 4.

An important goal of the thesis was to replace manually designed algorithms
by neural learning wherever possible; what is more, in several cases it is shown
that neural learning is not only successfully applicable but also perfectly com-
patible with real-time and accuracy constraints (chapters 4 and 6) which were

11

previously thought to require specialized solutions. This mainly applies to the
initial detection and feature extraction stages.

In chapter 5, an trainable method for initial detection is proposed. Although
it does not use neural networks as such, the model employs neural processing
principles like a layered structure, center-surround interactions and biased com-
petition by top-down modulation. It is furthermore inspired by the principle of
feature-based attention and can learn simple feature properties of target objects.

In chapter 6 it is demonstrated that one can use neural learning to reduce
the initial detection problem to a classification problem: a fast neural classifier
is applied at all image locations and several spatial scales. Thus, one could elim-
inate initial detection altogether from the object detection process. Chapter 6
furthermore shows how to define a meaningful feature extraction in a systematic
way using the neural network learning process. The complexity of the object
detection problem can be significantly reduced by the neural learning methods
presented in chapter 6.

For improving the classification step itself, two different techniques for neu-
ral network structure optimization are compared in chapter 7. One of them is
a new evolutionary method which – although complicated – is demonstrated to
produce neural networks whose structure is well suited to solve a given classifica-
tion tasks. The other method is a simple pruning heuristic known as magnitude-
based pruning, which is used as a baseline for comparison. Both optimization
methods are evaluated according to multi-objective performance indicators, the
objectives being speed and classification accuracy. The practical benefit is that
a set of solutions is produced, each of which is optimal with respect to a certain
trade-off between the two objectives. One can thus choose an optimal neural
network structure that fits the given constraints, but (and this is the point) this
can happen after the optimization is finished.

Due to the focus of the research group I was working with, most exper-
imental tests are performed on classification problems arising from advanced
driver assistance applications, like car detection and traffic sign detection (on
one occasion, a face detection problem is investigated).

This thesis is intended for readers who are familiar with neural networks
and statistical learning theory. A comprehensive knowledge of digital image
processing, however, is not required. Those concepts and techniques which are
used in later parts are briefly reviewed in the first part of the thesis. A complete
introduction to the subject is neither intended nor, indeed, possible within the
scope of a thesis; the interested reader is referred to textbooks like [69] or [106].
I feel it is a justified approach to treat digital image processing in this rather
brief way since it is just a tool, not a central issue of this thesis.

In order to enable the reader to assess the contributions of this thesis prop-
erly, an overview over selected current object detection architectures which were
sources of inspiration is given. Furthermore, since a part of the thesis which I
consider very important makes use of a technique called principal components
analysis, a review with its focus on possible extensions and generalizations has
also been included.

12

Part I

Foundations

13

Chapter 1

Basic techniques of digital
image processing

In this chapter, basic concepts from digital image processing are reviewed and
explained. Emphasis is given to those topics which are required for an under-
standing of the later chapters in part II of this thesis.

1.1 The sampling theorem

The sampling theorem [79, 90, 113, 130] is a mathematical theorem about the
representation of continuous functions by discrete samples. It is of tremendous
importance in digital image processing because a digital image approximates
the ”real” image it is derived from by discrete sample points. Therefore, care
must be taken when performing operations on digital images not to violate
the conditions imposed by the sampling theorem and thereby to corrupt the
information contained in the image.

The following section derives the theorem’s fundamental statements and then
goes on to discuss the implications for digital image processing.

Consider an (infinitely extended) continuous, two-dimensional image de-
scribed by F (x, y). Sampling means reducing F (x, y) to a discrete (although
still infinitely extended) set of sample points. It is demanded that the original
image should be recoverable from those points without errors.

Sampling is performed by means of the delta comb

S(x, y) =
∞∑

j1=−∞

∞∑
j2=−∞

δ(x − j1∆x, y − j2∆y) . (1.1)

14

The sampled image is then given as

FS(x, y) = F (x, y)S(x, y) =
∞∑

j1=−∞

∞∑
j2=−∞

F (x − j1∆x, y − j2∆y)

S(x − j1∆x, y − j2∆y) . (1.2)

When analyzing FS(x, y), it is useful to change to the spatial frequency domain
by applying the two-dimensional Fourier transform. The Fourier transforms of
the original image F (x, y) and the sampled image FS(x, y) are given by

F(ωx, ωy) =
∫ ∞

−∞

∫ ∞

−∞
F (x, y)exp{−i(ωxx + ωyy)}dxdy

FS(ωx, ωy) =
∫ ∞

−∞

∫ ∞

−∞
FS(x, y)exp{−i(ωxx + ωyy)}dxdy . (1.3)

FS(x, y) is obtained by multiplication with the delta comb S(x, y). The Fourier
transform of S(x, y) is given by

S(ωx, ωy) =
4π2

∆x∆y

∞∑
j1=−∞

∞∑
j2=−∞

δ(ωx − j1ω
s
x, ωy − j2ω

s
y) , (1.4)

where ωs
x = 2π

∆x , ωs
y = 2π

∆y represent the sampling frequencies in the spatial
frequency domain. Using the Fourier transform convolution theorem (see, e.g.,
[7]) which states that a multiplication in the space domain corresponds to a
convolution (see section 1.2 for a formal definition) in the frequency domain, we
obtain

S(ωx, ωx) =
1

∆x∆y

∫ ∫ ∞

−∞
F(ωx − α, ωy − β)

∞∑
j1=−∞

∞∑
j2=−∞

δ(α − j1ω
s
x, β − j2ω

s
y)dαdβ .

This expression can be rewritten by applying elementary δ gymnastics (see,
e.g., [87] for a summary of the properties of the delta distribution) to give the
final result

FS(ωx, ωy) =
1

∆x∆y

∞∑
j1=−∞

∞∑
j2=−∞

F(ωx − j1ω
s
x, ωy − j2ω

s
y) . (1.5)

This is an extraordinary result: it states that the spectrum of the sampled image
is repeated infinitely often at intervals of (ωs

x, ωs
y). This is visualized in fig. 1.1.

From the figure, it is also obvious that this is only possible if F(ωx, ωy) is band-
limited in the spatial frequency domain. This means that there exist frequencies
ωmax

x , ωmax
y such that F(ωx, ωy) = 0 ∀(ωx, ωy) > (ωmax

x , ωmax
y). Otherwise, the

periodical repetitions of F(ωx, ωy) would overlap and it can be shown that

15

ω1

ω1

ω1

ω1

ωmax
x

ωmax
y

ωs
x

ωs
y

Figure 1.1: Effect of spatial sampling on representation in the frequency domain.
The original band-limited spectrum is periodically repeated at intervals given
by the sampling frequencies ωs

x, ωs
y. If the sampling frequencies are chosen too

small, the replicated spectra will overlap, making reconstruction from samples
impossible.

exact reconstruction of the original image F (x, y) becomes impossible. Simply
speaking, this result expresses that the choice of sampling frequencies is not
arbitrary: The correct frequencies depend on the image content in F (x, y) by

ωmax
x ≤ ωs

x

2

ωmax
y ≤ ωs

y

2
. (1.6)

This can be expressed as

∆x ≤ π

ωmax
x

∆y ≤ π

ωmax
y

.

In digital image processing, images are always sampled at intervals of one
pixel. Although they are of finite size, the validity of the statements given
above is not affected, because one can always consider infinite images which
have nonzero values in a finite region only. Assuming that the digital image
has been correctly sampled, two interesting statements can be derived from the
given inequalities:

• The highest possible frequency in the digital image is π/pixel or half a
wavelength per pixel.

• When re-sampling an image to a smaller size, frequencies which cannot
be represented any longer (since the sampling frequencies ωs

x and ωs
y have

decreased) must be removed from the image

16

1.2 Image processing using convolution filters

In digital image processing, convolutions of digital images with discretized func-
tions called convolution filters play a very important role, as shall be explained
in later sections of this chapter. For now, it is sufficient to state that the convo-
lution of a digital image with a convolution filter is an operation that changes
the content of the image in a defined way. In order to derive a quantitative de-
scription of this process, we will proceed in the same way as in section 1.1 and
start from a continuous representation of the image F (x, y) and the convolution
filter C(x, y).

Mathematically, a convolution is an operation on function spaces H (for
example, L2): H×H → H which is defined by (C∗F)(z) =

∫
D C(α)F (z−α)dα

whenever this integral exists. The support of both functions is denoted by
D, z, α ∈ D and F (z), C(z) ∈ H . In the case of two-dimensional images
considered here, D corresponds to R2.

1.2.1 General properties

The following general properties of convolutions are of relevance for digital image
processing:

• Linearity

{kC1(z) + jC2(z)} ∗ F (z) = kC1(z) ∗ F (z) + jC2(z) ∗ F (z) (1.7)

• Commutativity

C1(z) ∗ C2(z) = C2(z) ∗ C1(z) (1.8)

• Associativity

C1(z) ∗ {C2(z) ∗ F (z)} = {C1(z) ∗ C2(z)} ∗ F (z) (1.9)

Another very useful property arises from the Fourier transform convolution the-
orem (see last section) which states that a convolution of two functions amounts
to a multiplication of their Fourier transforms. Thus, the effect of a convolution
can be very easily analyzed in frequency space. It shall now be demonstrated
that the properties that were just stated continue to apply when image and
convolution filter are sampled.

1.2.2 Convolutions of sampled functions

Let FS(x, y) stand for the sampled image and CS(x, y) for the sampled convo-
lution filter in accordance with eqn. (1.2). It is assumed that sampling happens
at a common sampling frequency ωs in both dimensions and that the conditions
(1.6) imposed by the sampling theorem are respected. Then, the Fourier trans-
forms of FS(x, y) and CS(x, y) can be computed; by inserting the definitions of

17

the sampled functions and applying simple properties of the delta distribution,
the following expressions are obtained:

CS(ωx, ωy) =
∞∑

j1=−∞

∞∑
j2=−∞

C(j1∆x, j2∆y) exp{−i(ωxj1∆x + ωyj2∆y)}

FS(ωx, ωy) =
∞∑

j1=−∞

∞∑
j2=−∞

F (j1∆x, j2∆y) exp{−i(ωxj1∆x + ωyj2∆y)} .

(1.10)

Now, eqns. (1.10) are just the expressions for the discrete Fourier transform!
And, since the Fourier transform convolution theorem continues to hold, it can
be stated that convolutions of sampled images with sampled filters amount
to a component-wise multiplication of their discrete Fourier transform (DFT)
coefficients.

1.2.3 Image processing with discrete convolution filters

At this point it is helpful to recall the information encoded in the Fourier rep-
resentation of an image or a filter. It is this: High frequencies correspond to
fine image details and low spatial frequencies to coarse ones. Thus, the repre-
sentation of a filter in frequency space directly expresses its effect on the image
content.

This insight is of tremendous importance, because it justifies the design
of discrete convolution filters directly in frequency space; the position space
representation can be computed by inverting the DFT.

In the same way as in (1.10), the convolution formula given above is dis-
cretized by the sampling process:

(CS ∗ FS)(z) =
∫

D

CS(α)FS(z − α)dα =

=
∞∑

j1=−∞

∞∑
j2=−∞

CS(j1∆x, j2∆y)FS(x − j1∆x, y − j2∆y) ,

(1.11)

where the second row is obtained by performing the integrals and specializing
to two dimensions. The only obstacle to actually using discrete convolutions for
image processing is the infinite size of the sampled images and convolution filters,
expressed by the infinite sums in eqn. (1.11). Since digital images are usually not
derived from a continuous, infinite representation but are already available in a
sampled, finite form, they do not cause problems. However, discrete convolution
filters often are obtained in this way; therefore, they must be made finite by
introducing a cut-off length δ: every filter point outside an interval defined by
δ is set to zero. This operation is not without its problems because it will
introduce additional frequencies into the spectrum of a filter. Treating the

18

Image Filtered Image
Σ

Image

Figure 1.2: Left: Visualization of a discrete convolution. The convolution filter
is placed with its center (indicated by the black dot) over a certain image pixel
such that each filter pixel is ”on top” of one image pixel. Each pair of filter and
image pixels is multiplied and the results are summed up, giving one number
per image pixel. This number is stored in the transformed image which has the
same dimensions as the original image. Right: Boundary effects occurring when
parts of the filter mask exceed the image dimensions. Different ways to deal
with this situation are described in the text.

problem in one dimension for simplicity, a cut-off corresponds to the component-
wise multiplication of the filter with the window function W δ

rect given in (1.12).
Due to the Fourier transform convolution theorem, the DFT of the new filter
will be a discrete convolution of the original filter transform with the DFT of
the window function

W δ
rect(x) =

{
1 |x| < δ/2
0 otherwise

Wδ
rect(k) = δ

sin(kδ/2)
kδ/2

, (1.12)

and it is obvious that a convolution with Wδ
rect(k) will, in general, change the

DFT significantly.1 A rule-of thumb for circumventing this problem is to ap-
ply the cut-off in regions where the convolution filter is already close to zero.
Nevertheless, the effect on the DFT should always be checked.

A finite, discretized convolution filter is also called a filter mask, and its DFT
is termed a transfer function. The process of convolving a digital image with a
sampled, finite filter mask is depicted in fig. 1.2 (left).

1.2.4 Practical considerations

In order to apply the techniques described in the last sections in practice, aspects
of computational efficiency, the finiteness of image and convolution filters and
the general problem of filter design must taken into account.

1This is consistent, because as δ → ∞, Wδ
rect(k) tends to a delta distribution and the

convolution has no effect.

19

Guidelines for filter design

Filter masks may be designed in a variety of ways [69] to perform desired opera-
tions on an image. Two obvious possibilities are the design of filters in position
and in frequency space. If filter design is performed in frequency space, a contin-
uous transfer function must be constructed and transformed to position space,
where it is sampled and made finite (if necessary). Conversely, a continuous
function in position space can serve as a model for the filter mask, which is
obtained by sampling and a suitable cut-off.

Boundary conditions

Since images and filter masks are finite, it is possible to apply a filter mask at
positions where parts of it exceed the image dimensions. Examples are shown
in fig. 1.2 (right). Several possible strategies can be used when this happens:

• Exclude borders: The filter mask is not applied and a value of zero is
returned.

• Zero-padding: Only the part of the filter mask that is within the image is
applied.

• Periodic boundary conditions: The problem is circumvented by treating
the image as infinitely large but periodic in all directions.

• Mirror boundary conditions: The image is replicated periodically; in con-
trast to periodic boundary conditions, the image is mirrored at each
boundary such that pixel values never change when crossing a boundary.

When calculating the transfer functions of filter masks, the frequency is
usually normalized by the highest possible frequency (half a wavelength per
pixel) that can appear in a digital image. This frequency is commonly called
the Nyquist frequency.

Separable and non-separable convolution filters

In practice, huge performance gains can be achieved by using separable filters.
These are filter masks f that can be expressed by discrete convolutions of one-
dimensional masks, e.g.: f = fx ∗ fy. If the filter mask is derived from a
continuous function f(x, y), the condition f(x, y) = fx(x)fy(y) is sufficient for
the separability of the filter mask f . Using (1.8) and (1.9), one can show that

f ∗ F = (fx ∗ fy) ∗ F = fx ∗ (fy ∗ F) = fy ∗ (fx ∗ F) ,

which means that the convolution with filter mask f can be expressed by suc-
cessive convolutions with the one-dimensional masks fx and fy. Please observe
that the complexity in the latter case grows linearly with the size of f , whereas
it grows polynomially (in two dimensions: quadratically) in the former case.

20

-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

0 0.2 0.4 0.6 0.8 1T
r
a
n
s
f
e
r

f
u
n
c
t
i
o
n

Spatial frequency

Order filter mask normalization const.
2 1 2 1 4
4 1 4 6 4 1 16
6 1 6 15 20 15 6 1 64
8 1 8 28 56 70 56 28 1 256
n 1,..(n times) n

Figure 1.3: One-dimensional filter masks and transfer functions of lowpass fil-
ters. Left: transfer functions of a box filter of order 3 (solid line), a binomial
filter of order 2 (bright triangles), and a binomial filter of order 4 (dark tri-
angles). It is notable that the binomial filters achieve much better smoothing
because high frequencies are uniformly attenuated, whereas the box filter allows
the highest frequencies to pass with inverted sign. The transfer functions of
higher-order binomial filters fall off more quickly, which enables them to filter
out lower frequencies. All frequencies are normalized by the Nyquist frequency.

1.3 High- and lowpass filters

A very commonly used class of filters is the class of smoothing filters. They
remove high frequencies from an image and are therefore lowpass filters. It is
always possible to construct a highpass filter from a lowpass filter by subtracting
a lowpass filter from the identity filter whose entries are equal to zero except
for the central pixel which is equal to one.

The class of binomial filters approximates a Gaussian function but avoids
sampling and cut-off problems (see fig. 1.3). Transfer functions are nonnegative
and monotonically decreasing, ensuring that high frequencies are eliminated
efficiently.

1.4 Bandpass filters

By considering the transfer functions shown in fig. 1.3, one can perceive that
the difference of two distinct lowpass filters (e.g., two binomial filters) will be
the transfer function of a bandpass filter. Bandpass filters allow only certain fre-
quencies in the image to ”survive” the convolution, thus effectively eliminating
all image structures outside a certain size range. This behavior can again be
read off directly from the transfer function. Fig. 1.4 shows the transfer function
of a typical bandpass filter, and fig. 1.7 gives an example for bandpass filtering.
The most commonly used bandpass filters are so-called difference-of-Gaussians
(doG) filters. As their name indicates, they are formed by subtracting the filter
masks derived (by sampling and appropriate cut-off) from Gaussian curves with
mean zero and different standard deviations. By varying the standard devia-
tions of the two filter masks, different frequency selectivities can be achieved.
This is especially easy to calculate since the Fourier transform of a Gaussian is
also a Gaussian.

21

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1

Figure 1.4: Transfer function of a bandpass filter constructed from the difference
of a fourth-order and a second-order binomial filter.

1.5 Orientation-selective filters

The filters discussed in the preceding sections were frequency selective but (ap-
proximately) isotropic, i.e., only the frequency modulus ω =

√
ω2

x + ω2
y was

considered and not the phase. The class of orientation-selective filters can se-
lect frequencies according to phase and modulus. Most prominent in this class
are the so-called Gabor filters which come in quadrature pairs and have filter
masks that are derived from the continuous functions

ox(x) =
1

2πσ2
cos(kT

0 x) exp(− x

2σ2
)

oy(x) =
1

2πσ2
sin(kT

0 x) exp(− x

2σ2
) . (1.13)

The parameter k0 determines the modulus and phase of the frequency selectiv-
ity, whereas σ controls the width of the peaks in frequency space: large values
of σ lead to narrow peaks and vice versa. Fig. 1.5 illustrates this relationship.

The term quadrature pair refers to the fact that oy has a phase shift of π/2
with respect to oy. The two filters are therefore selective for a common frequency
modulus but orthogonal phases. The filter responses at a certain image point
can be taken as the components of a two-dimensional vector, whose modulus
is called the oriented energy at that image point. An example of the effects of
Gabor filtering is given in fig. 1.7.

1.5.1 Gradient filters

In many applications, digital image processing techniques are desired that can
reliably detect boundaries within an image, that is, discontinuities which may
indicate the presence of an object. Sometimes this amounts to the detection
of edges [11] or corners [48]; most of these and related techniques are based
upon the evaluation of gradient information computed from an image. For this
purpose, gradient filters are employed which are discretized versions of derivative
operators. The simplest gradient filters read Gx = GT

y = (−1 0 1); examples of
their effects are given in fig. 1.7. It is possible to construct larger gradient filter
masks that are sensitive to image discontinuities at larger spatial scales [69].

Strictly speaking, gradient filters are orientation selective because they en-
hance horizontal or vertical structures. In many cases, however, the orientation

22

-10
-5

0
5

10
x -10

-5

0

5

10

y

-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

Transfer function

-6
-4

-2
0

2
4

6x -6
-4

-2
0

2
4

6

y

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Transfer function

Figure 1.5: Left: Plot of the even part of the Gabor convolution filter. Right:
Corresponding transfer function. For both diagrams, the parameters k0x =
k0y = 3, σ2 = 2 were used.

(phase) of local gradients is not needed but only their magnitude. Therefore,
isotropic gradient filters would be desirable. Obviously, Gx and Gy are not
isotropic, and it can even be shown [106] that there is no linear isotropic gra-
dient filter. There is, however, a nonlinear gradient operator G that can be
constructed from Gx and Gy. Let FS(x, y) again denote the sampled image; the
definition of G then reads

(GFS)(x, y) =
√

(Gx ∗ FS)(x, y)2 + (Gy ∗ FS)(x, y)2 . (1.14)

The analogous nonlinear operation that calculates the local phase is given
by

(PFS)(x, y) = arctan
{ (Gy ∗ FS)(x, y)

(Gx ∗ FS)(x, y)

}
.

(1.15)

The nonlinear operator G is usually called the gradient energy operator. Often,
the square root is not performed for reasons of computational efficiency. The
rescaling of a gradient energy image to a fixed range of pixel values will there-
fore suppress small values strongly, leading to the smooth appearance shown
in fig. 1.7. Linear gradient filters are a crude but nevertheless frequently used
method of local orientation estimation.

1.6 Rescaling of digital images

Sometimes it is required to enlarge or shrink a digital image to a fixed size. In
several chapters of this thesis, for example, neural classifiers is applied to each
location in an image; however, since objects cannot be expected to have fixed
size, and since the input dimension of the classifiers cannot be changed easily,
one has to resize the image appropriately. In this section, the focus lies on

23

Figure 1.6: Deducing pixel value (xP , yP) by bicubic interpolation. Left: Grid
positions of original and rescaled image are indicated by line cross-sections and
black dots. Right: For obtaining the interpolated value at the non-integer grid
position (xP , yP), a 4x4-neighborhood is taken into consideration. Four cubic
polynomials (one for each row 0 ≤ yi ≤ 3) are fitted to match pixel values at
integer grid positions (·, yi). Now grid positions (xk, yi), which have non-integer
x-coordinates xk are available by evaluating the polynomials. Another cubic
polynomial is fitted to match the four interpolated pixel values at each (xP , yi).
By evaluating this polynomial at (xP , yP), the desired result is obtained.

the case where images have to be reduced in size: the two main techniques for
achieving this are interpolation and downsampling. Interpolation is performed
whenever an image is reduced in size by a non-integer factor; otherwise, the
image can be shrunk to the desired size by downsampling (i.e., by sampling the
image at integer pixel intervals).

When reducing an image in size, it is important not to ignore the sam-
pling theorem. As was stated in section 1.1, this amounts to a reduction of
the sampling frequency. Therefore, the highest possible frequency that can be
represented correctly is reduced by the same factor. As a consequence, if the
image is reduced in size by a factor of r, a fraction (given by 1−r

r) of the highest
frequencies must be removed from the image. If, for example, the dimensions of
an image are reduced by a factor of 2, then the upper half of the spectrum (in
both dimensions) must be removed by using appropriate smoothing filters. In
this case, a suitable filter is a binomial filter of order 4 because it is separable,
has a small filter mask and suppresses the upper half of the spectrum to very
good approximation.

If r �= 2, the smoothing operation must still be performed, although now
with a smoothing filter that removes the necessary fraction of high frequencies.
Gaussian filters are usually chosen for this purpose, and their variances are set
accordingly. A more difficult issue is the fact that pixels in the resized image
usually have non-integer positions in the original image. It is therefore unclear
where the values of pixels in the resized image should be taken from, see fig. 1.6
for details. In this thesis, bicubic interpolation [75] of the smoothed original

24

image is used for this purpose. The idea is to locally approximate the image by
fourth-order polynomials in both directions (this is why the method is called
bicubic interpolation) using a 4×4 neighborhood. The polynomials are then used
to extrapolate values at non-integer grid positions. This process is illustrated
in fig. 1.6.

25

Figure 1.7: Examples of convolutions of an image (first row, left) with various
filter masks. First row, right: Binomial smoothing filter of order 8. The filter
mask is quite small, therefore only fine details are removed. Second row: Gra-
dient filters Gx (left) and Gy (right). Third row: Bandpass filter constructed
from two binomial filter of orders 4 and 8 (left) and nonlinear gradient energy
operator (right). The image in the last row shows the application of a Gabor
filter with parameters k0x = k0y = 5, σ2 = 1.5. This means that orientations
centered around π/4 are selected by the filter.

26

Chapter 2

Principal components
analysis

Principal components analysis (PCA) is a method of statistical data analysis. It
performs a linear transformation of the data to a often much lower-dimensional
space while trying to preserve a maximum of information. Viewed from another
perspective, it can also be interpreted as an unsupervised learning rule which
has connections to the the well-known Hebbian learning rule [51, 88]. PCA has
abundant applications in data compression [17], image analysis [117] and source
separation [71]. In the context of computer vision and object recognition, PCA
is often used for data reduction (see, e.g., [27], feature extraction (see [117]
and references therein), allowing learning mechanisms to focus on significant
properties of the data in a sense to be made more precise later. In this thesis,
PCA is used to extend a neural network learning rule (see chapter 6) by an
unsupervised component. This is done in order to extract the statistically most
significant properties of the data, thus improving generalization ability. For
this reason, the PCA technique is discussed in-depth with special emphasis on
neural network implementations of PCA.

2.1 Notation

Given a set of vectors xk of dimension K, we define notation for some important
quantities: the expectation value of the xk is denoted E(x), the component-wise
variance of the xk is written var(x). In accordance with [57], the correlation of
two components xi and xj of x is written corr(xixj) = E(xixj)−E(xi)E(xj) ≡
cij . This quantity is explicitly defined because there is some confusion in the lit-
erature about it; some sources denote by correlation the quantity E(xi)E(xj)√

var(xi)var(xj)
.

The symmetric matrix C = (cij) is called the correlation matrix.

27

Figure 2.1: Illustration of the one-to-one correspondence between the PCA
problem and feed-forward neural networks. The upper layer (the input layer)
receives the vectors xk one by one; connections from the input layer neurons
to neuron m in the lower layer (corresponding to a principal component ym)
correspond to weight vector wm.

2.2 Basic concepts

PCA performs a linear transformation of each xk to a vector of dimension
M ≤ K: yk = Wxk where W is a M × K - matrix whose rows are denoted
wm, m = 0, . . . , M − 1. Two constraints are imposed:

1. Each wm must define, in descending order, directions along which the
variance of the xi is maximal: var(wT

mxi) = max.

2. The wm must be mutually orthonormal: wT
mwj = δmj, j ≤ m.

The elements yi of y are called the principal components of x. Note that the
PCA problem can be translated into a two-layered feed-forward neural network
with an first layer (containing K neurons) that receives the vectors x as input,
and a second layer with M ≤ K neurons, each of which is fully connected to
the first layer by the weight vectors wm. Please see fig. 2.1 for a visualization.
The issue is now to find suitable wm such that both constraints are fulfilled.

Before it is discussed how solutions to this problem can be obtained, some
useful properties of the desired transformation are stated. The first point to
be made is this: since the components of the y are sorted in direction of de-
scending variance, PCA can be used to perform data compression by using only
some (and not all) principal components. In practice, this is achieved by choos-
ing M < K. When transforming back to the original space, a representation
of the xi is obtained which preserves most of the variability of the original
vectors, although expressed by a lower-dimensional basis. Especially in image
processing, it is highly surprising how few principal components are sufficient to
represent an image with no perceptible change in visual appearance (please see
fig. 2.2). This is possible because neighboring image pixels are usually strongly
correlated. Since PCA is a linear operation, constraint 2 amounts to a decorre-
lation of principal components and thus to a removal of redundancies, making
compression possible.

Indeed, and this is a second important point to be made, PCA can also be
obtained by requiring a data compression property from the start: Consider the

28

Figure 2.2: Examples of image compression and reconstruction by principal com-
ponents. As in JPEG compression, the image is partitioned into non-overlapping
blocks of 8x8 pixels, and PCA is performed using pixel values of the blocks as
input vectors. If the PCA transformation is inverted, an approximation of the
original image is obtained. The quality of the approximation depends on the
number of principal components that were calculated; the pictures show image
reconstruction using one (upper left), three (upper right), four (lower left) and
five (lower right) principal components. At five principal components (using
5 instead of 64 numbers to encode one block), visual inspection cannot detect
differences to the original image (not shown).

function

JMSE(W) = E(||x −
M−1∑
m=0

(wT
mx)wm||2) = trace C −

M−1∑
m=0

wT
mCwm (2.1)

which describes the approximation error in expressing the xi by basis vectors
from a lower-dimensional subspace. Solutions minimizing JMSE can be shown
[95] to be, up to a rotation, identical to the solutions defined by conditions 1
and 2.

2.3 Solution methods

It is well known [57] that the unit-length eigenvectors of the correlation matrix
C fulfill both constraints. Thus, given the correlation matrix C which has to
be estimated from available samples xi, it is possible to determine the principal
components by standard numerical methods like the QR algorithm [23,44]. This

29

amounts to a batch mode method where the correlation matrix (i.e. the second-
order statistical moments) is calculated first, followed by the determination of
eigenvectors and eigenvalues. The disadvantage is obvious: the whole sample
must be processed before a solution can be given. However, since this thesis deals
with neural network learning, other methods are more interesting: first of all,
an exact analytical solution is not required, but it is sufficient to approximate it
with sufficient accuracy. This implies that a gradient-based algorithm might be
used to find solutions by minimizing a cost function like JPCA given in eqn. 2.1.
Furthermore, it is unfeasible to process the whole data sample before solutions
can be given; rather, a learning algorithm should consider individual vectors x
one at a time and become increasingly accurate as more vectors are processed.
This property is referred to as online learning.

2.4 PCA by neural networks

As shown in fig. 2.1, PCA can in principle be performed by feed-forward neu-
ral networks. It is only necessary to maximize the variance of wT

mx for all
weight vectors by a suitable learning rule while enforcing the normalization and
orthonormality constraints. It is, by the way, easy to see why normalization
is required, since the variance of wm

T x grows linearly with the norm of the
weight vector. The update rule for one weight vector can therefore be obtained
by using gradient ascent. Considering that

∂var(wm
T x)

∂wm
= 2E(ymx) = 2E((wT

mx)x , (2.2)

we get the update rule

um = wm + γ(ymx) (2.3)

vm = um −
m−1∑
j=0

(w(i+1)
j

T
um)wnew

j (2.4)

wnew
m =

vm

||vm|| (2.5)

where γ is a small positive constant. If γ is chosen as the inverse of the sample
size, the exact expectation value of eqn. (2.2) is recovered. This is, however,
still not acceptable for a neural network implementation due to the orthonor-
malization steps (2.4) and (2.5).

2.5 Derivation of learning rules

A further simplification can be derived from the fact that γ is small. Therefore,
the orthonormalization step can be linearized, mainly by multiplying out all
terms in (2.4), neglecting all terms which are quadratic in γ, and then expanding
the denominator on the right-hand side of (2.5). By expanding the square root in

30

powers of γ and disregarding terms of order higher than one, we finally obtain a
learning rule known as the Stochastic Gradient Ascent rule (see, e.g., [91,92,94]):

wnew
m = wm + γym(x − wmym − 2

∑
n<m

ynwn) . (2.6)

It has been rigorously proven that learning rule (2.6) achieves convergence of
the wm to the true eigenvectors of the correlation matrix under rather mild
conditions (see [94]). The initially proposed version of this learning rule which
is only suitable for the computation of the first principal component is usually
called Oja´s rule [91]. Please observe that this is an online learning rule; it is
therefore well suited for applications in neural networks (see fig. 2.1). Other
learning rules have been proposed, most notably the Generalized Hebbian Al-
gorithm [110] and the Subspace Algorithm [92]. They are similar in form to
(2.6) and differ only in the term which achieves orthonormalization of weight
vectors. Since the subspace rule will be important when generalizing PCA to
the nonlinear case (see next section), it will be stated explicitly:

wnew
m = wm + γym(x −

M−1∑
n=0

ynwn) . (2.7)

Unlike learning rule 2.6, the subspace rule is obtained by maximizing the sum of
variances JSUB =

∑M−1
n=0 var(yn) instead of the individual variances under the

constraint of orthonormality. Therefore, this method gives the eigenvectors of
the correlation matrix only up to a rotation (see [92] for a proof). This is the
same type of behavior as obtained when minimizing JMSE from (2.1). Indeed
it is not hard to show that both functions are equivalent.

Due to its symmetry, the subspace rule can also be written in matrix nota-
tion:

W new = W + γ
{
WxxT − (WxxT WT)W

}
. (2.8)

The derivation of the subspace rule is equivalent in form and methods to the
derivation of the Stochastic Gradient Ascent rule starting from eqns. (2.3) —
(2.5). A curious and interesting fact is the appearance of the so-called Hebbian
term on the right side of (2.6), (2.7) and virtually all proposed PCA learning
rules, since it relates the well-known paradigm of Hebbian Learning [51, 88] to
principal components analysis, suggesting that a processing principle similar to
PCA might be employed in human and animal brains.

2.6 Nonlinear PCA

When using neural networks for PCA, the preceding sections implicitly assumed
that the mapping from x to y (or: from one network layer to the next) was linear,
that is: yi = wT

i x. Usually, however, this is not the case in current neural
network models; instead, a transfer function of sigmoidal type is predominantly

31

used. The mapping thus changes to yi = σ(wT
i x)) where usually σ(x) = x

1+|x| is
used, although the main point is that σ(x) is a nonlinear function. The question
is now if and how the principles of PCA can be carried over to apply in this new
situation. Numerous attempts in this direction have been made [50, 80, 93, 138]
(or see [42] for a review) and the term ”nonlinear PCA” is by no means unique. A
basic problem in carrying PCA over to the nonlinear case is that the constraints
that define the linear case do not define the nonlinear case uniquely. Therefore,
it is not even clear how to formulate the task of nonlinear PCA. However, most
authors have taken the minimization of the reconstruction error as given by the
nonlinear version of (2.1) as the starting point of investigations. Therefore, a
possible nonlinear PCA problem amounts to minimizing

Jnl
PCA(W) = E(||x −

M−1∑
m=0

σ(wT
mx)wm||2) (2.9)

under the constraint of orthonormality. Since it has been stated in the previous
section that, for the linear case, this leads to the subspace learning rule, it
seems like a good starting point to attempt a generalization of this learning rule
to the nonlinear case. Indeed, a learning rule minimizing Jnl

PCA(W) has been
derived [72]; it is given here for completeness, for in the application presented
at a later point of this thesis, an approximation is used: Nevertheless, switching
to matrix formulation for clarity, the nonlinear subspace rule reads:

W new = W + γ
{
F (Wx)WrxT + σ(Wx)rT

}
, (2.10)

where r = x − WT σ(Wx) represents the current approximation error (in
the sense of (2.9)), F (Wx) = diag(σ′(wT

0 x), . . . , σ′(wT
M−1x)) and σ(Wx) =

(σ(wT
0 x), . . . , σ(wT

M−1x)). In [71] it is shown that the first term in (2.10) can
be neglected under certain conditions, and furthermore that the nonlinear sub-
space rule can be consistently approximated by

W new = W + γσ(Wx)
{
xT − σ(Wx)W

}
(2.11)

in the sense that this rule also minimizes Jnl
PCA from (2.9). Now, this is an

extremely interesting result since by taking σ(x) to be the identity map one
recovers the original subspace rule (2.7). This result therefore suggests that one
can perform nonlinear PCA in a neural network in the same way as linear PCA
using the subspace rule. It is just required to replace occurrences of wT

mx in the
learning rule by σ(wT

mx), which usually happens automatically when changing
to σ(x) as a transfer function.

2.7 Local PCA

The PCA setting elaborated up to now can be termed ”global” in the sense that
all computed principal components are principal components of the whole input
vectors. To put it another way, each second-layer neuron in fig. 2.1 is connected

32

Figure 2.3: Example of a feed-forward neural network that performs local PCA.
The ellipse indicates the set of neurons projecting to the leftmost second-layer
neuron.

to all input neurons. This contradicts findings from neurophysiology where it
has long been known that neurons in the early stages of visual processing have
local connectivity, i.e., they are connected to a small patch of the preceding layer
only [28]. The concept of local feature analysis [101] tries to reflect this property
by representing images as a superposition of spatially localized properties (see
also [97] for a motivation of local image features). The concepts of linear as well
as nonlinear PCA can be used without restrictions for local feature analysis; the
term local PCA has become common for such algorithms.

When performing local PCA by a neural network, one only needs change the
full connectivity of fig. 2.1 to local connectivity: see fig. 2.3. In chapter 6, local
PCA is performed by using a nonlinear subspace rule and local connectivity
similar to fig. 2.3.

33

Chapter 3

Object detection: selected
approaches

The goal of this thesis has been to develop neural learning methods that can
improve object detection systems. There is a great deal of research currently
going on in this field, and various methods exist to tackle the problem for
a range of application scenarios. In this chapter, selected proposals and ideas
that have been sources of inspiration are reviewed and discussed. The discussion
is restricted to models who intend to be of general applicability in real-world
scenarios; therefore, specialized solutions making restrictive assumptions about
the types of objects and scenes that can be expected are not considered: this
excludes, for example, methods often used in robotics where fixed backgrounds
and a limited number of objects can be expected. Many of the models described
in the following are (to various degrees) inspired by biological visual processing,
although in some cases the relationship is rather remote, and real-time aspects
are seen as more important. The following overview is not intended to be
complete; nevertheless, each of the presented models has one or several aspects
which are addressed and optimized by work presented in this thesis.

3.1 Saliency-based object detectors

Several proposals attempt to model the stimulus-driven allocation of visual at-
tention by so-called saliency maps. These are two-dimensional representations
computed from an input image exhibiting high values at locations that attention
should be directed to. Effectively, ”interesting” image regions are highlighted
and ”irrelevant” image regions are disregarded by saliency maps. In order to
reliably detect conspicuous image locations, these models operate in a purely
feature-based fashion on the whole input image. They typically compute fea-
tures like color, orientation, gradient energy or similar features at each image
location. The idea behind computing many different local features is the obser-
vation that most objects have one or more local properties which ”stand out”

34

from the surrounding image background, thus making efficient search possible.
This approach, however, works only if a sufficient number of local features is
computed.

Another assumption concerns the issue what local properties should be
treated as ”conspicuous”. Saliency map models assume that locations which
differ strongly from their surroundings merit the allocation of attention. This
naturally leads to the concept of center-surround filtering. As discussed in chap-
ter 1, center-surround filters (also called difference-of-Gaussian or doG filters)
are non-separable bandpass filters which analyze an image at one spatial scale.
This makes it necessary to evaluate local conspicuity at several spatial scales.
The predominantly used technique is that of image pyramids, which downsample
the image several times by a chosen factor (see chapter 1) and use the saliency
map to perform the detection of conspicuous locations on each downsampled
image.

A further crucial point in computing stimulus-driven saliency is competition.
In accordance with psychophysical findings [134], competition is modeled as oc-
curring between neighboring (local competition) or all (global competition) con-
spicuous image regions. Competition leads to the suppression of sub-maximal
map activations and ensures a unique ”winning” location within the radius of
competition.

From the strongest local activation in the map, a focus of attention (FOA)
can be determined. This location is considered the most conspicuous, and thus
the saliency map recommends it for further processing, possibly by a recognition
system. Subsequently, the FOA is inhibited (this is termed inhibition of return
in the literature, see, e.g., [76]) and the competition mechanism is applied again.
This will lead (due to continuing input from the image) to the emergence of local
activations that were previously suppressed, and a new FOA can be determined.
By repeating this procedure, the most salient regions in an image (in decreasing
order) can be visited by the FOA and thus be recommended for further analysis.

In this section, a saliency map proposed in [65] is described as a prototype
of a purely stimulus-driven bottom-up object detection system. A sketch of
the saliency map architecture is given in fig. 3.1. It analyzes the image at 8
spatial scales using three modalities: local orientation, local intensity and local
color. For each modality, a number of feature maps is created, representing the
first stage of processing and corresponding, e.g., in the case of the modality
for local orientation, to the input image linearly filtered by orientation-selective
filters. Within each modality, a number of doG-operations is applied to calculate
local conspicuity, combining feature maps of different scale and type but always
within the same modality. The results of the second processing step are summed
up to form, for each modality, a single conspicuity map.

The final saliency map is obtained by a linear combination of all conspicuity
maps. An inhibition of return mechanism is implemented using mechanisms
described above.

The model is tested on synthetic images of a type often used in visual search
experiments, and it is demonstrated to reproduce two typical kinds of search
slopes, namely those attributed to ”serial” and ”parallel” searches (although

35

Figure 3.1: The saliency map architecture proposed in [65].

current consensus is that these terms are misleading).
Furthermore, tests are performed using real-world images of outdoor scenes

where the task is to detect military vehicles. The model is very successful in
this task, but should be clear that this can only be the case because the target
objects size matches the size of the FOA which is set accordingly. No object
model is used at all, only the implicit assumptions about what constitutes a
salient image location.

In chapter 5, ways are described to incorporate the learning of simple feature-
based object models into a model very similar to [65]

3.2 Object recognition and classification

Once an object hypothesis has been produced by a saliency map or another
method, it is the task of an object classifier to analyze that hypothesis further
in order to confirm or to reject it. Since the number of proposals which have
been put forward to solve this task in general or specialized settings is enormous,
only general principles to be found in most classification models are outlined,
along with a few representative proposals.

The input to most classification models is a (rectangular) image region (of-
ten termed region of interest – ROI) which is to be classified. In most cases,
classification is preceded by a feature extraction step, during which significant
visual properties from within the given ROI are calculated. The result of feature

36

extraction is then passed to a trainable classifier such as a support vector ma-
chine (SVM), a neural network (NN) or a decision tree [121]. Consensus which
method yields superior performance has not yet been reached, therefore all three
models (and others) are widely used for recognition and classification. Likewise,
the correct choice of feature extraction for a given classifier and classification
task is a controversial issue. It is known that the performance of classifiers (e.g.,
support vector machines) can be significantly impaired if too many ”irrelevant”,
that is, uninformative, features are extracted [46].

Independently of the choice of classifier, it is also considered to be the task of
successful feature extraction to increase the robustness, i.e., the invariance of the
classification to distortions or noise, thus effectively improving the generalization
ability of the whole system. Typical distortions are due to lighting changes,
small translations, rotations or scalings or simply due to noise.

Popular feature extraction methods are the scale-invariant feature transform
(SIFT) [85], Gabor wavelets [98], principal components (see chapter 2), Haar
wavelets [69], integral image features [121], histogram features [105] and corner
features [48]. These algorithms can be used separately or in combination with
each other to obtain robust and powerful classifications.

In chapter 4 of this thesis, a combination of fixed feature extraction and
trainable neural network classifier is presented in the context of a car detection
task which uses a manually designed method to detect car hypotheses. In chap-
ter 7, the same neural network classifier is simultaneously optimized w.r.t. the
(often conflicting) objectives of speed and accuracy. In chapter 6, an approach is
presented which unifies initial detection, feature extraction and neural network
classification.

3.3 Combinations of object classifiers and salien-
cy-based detectors

There are several models which try to combine the detection of ROIs by saliency
maps coupled with subsequent ROI classification. In [124], the saliency map
model of [65] is combined with an object classifier described in [105]. A similar
model using a slightly more advanced saliency map and a robust real-time object
classifier [121] is presented in [34]. It is claimed in [34] that the saliency map
can be supplied with trainable feature cues in order to detect different kinds of
objects but the training method is not described.

Both publications report a significant reduction of the image area that ef-
fectively needs to be processed by the object classifiers. This effect was also
observed during the investigations described in chapter 5 of this thesis. Addi-
tionally, chapter 5 presents a concept of learning to enhance object features and
to suppress non-object features.

37

3.4 Whole-image search using object classifiers

Although it seems an infeasible approach at first glance, it is conceivable to ap-
ply a fixed-size object classifier at each possible and distinct image location (at
several spatial scales) in order to perform both object detection and classifica-
tion. If this method is to work, very fast and efficient classifiers are required, and
indeed most classification methods are not suitable for this kind of whole-image
search (also commonly termed ”brute-force search”). The class of convolutional
neural networks (CNNs) [83] is a type of neural network classifier permitting
whole-image search due to a network model that can be implemented by suc-
cessive convolutions of the input image (see also chapter 1). Fig. 3.2 gives a
(slightly simplified with regard to [83]) sketch of the CNN model. An impor-
tant property used by CNNs is the concept of weight sharing. This means that
identical weight configurations are duplicated over all spatial locations within
one processing layer of the NN. This amounts to a convolution (see chapter 1
for an overview) of a layer’s two-dimensional activations with a linear filter de-
fined by the NN weights. Although CNNs are primarily designed for very fast
execution speed, they exhibit a fair amount of biologically realistic properties,
namely local connectivity and a gradual change from topographic to categori-
cal representation. The latter property is ensured by the repeated subsampling
operations, which reduce the spatial accuracy of the representation in favor of
an increasingly global representation of whole objects in the lower layer of a
CNN. Using CNNs, it has been demonstrated that brute-force object searches
can be performed in real-time if necessary. Since CNNs are fixed-size classifiers,
brute-force search has to be conducted at several spatial scales (see chapter 1
for details).

The real-time capability is demonstrated in [83] and more recently in [37],
where a real-time face detection system is presented.

38

…
.…

layer 0

Feature maps

Feature maps

convolution

Subsam
pling

Region of interest

Subsam
pling

convolution

convolution

…
.…

classification

Figure 3.2: The CNN architecture proposed in [37]. The rectangle in the input
image indicates the ROI to which the CNN is applied. Convolution filter sizes
are chosen to be small (5 pixels), and a few manually chosen convolution results
(feature maps) are summed up before downsampling. This is indicated by more
than one arrow ending at a feature map. Subsampling decreases the size of a
feature map by a factor of 2. In the last convolution operation, each feature
map (already quite small due to repeated subsampling) is ”convolved” with a
filter that has the same size as the feature map, producing a single number.
This CNN architecture can also be used for brute-force searches: feature maps
are then obtained by convolving the whole image (instead of an ROI) with the
trained filters.

39

Part II

Own work

40

Chapter 4

Feature design for object
classification and detection1

4.1 Summary

This chapter is mainly concerned with object classification and the design of
meaningful visual features. Based on the problem of car detection, a suitable
feature extraction is defined, its invariance properties are tested and a working
neural network classifier is presented which relies on the extracted features. It
is demonstrated how a simple network optimization method can improve the
speed of classification, and how the feature extraction and the neural object
classifier can be embedded into a real-time car detection system.

1Some of the content of this chapter has been published in: A. Gepperth, J. Edelbrun-
ner, and T. Bücher. Real-time detection and classification of cars in video sequences. In
Proceedings of the IEEE Symposium on Intelligent Vehicles, pages 625–631, 2005.

41

4.2 Introduction

In many applications in driver assistance systems, behaviorally relevant objects
in traffic scenes must be reliably detected by image processing in order to gener-
ate high-level-representations allowing, e.g., behavior planning. Most prominent
among behaviorally relevant objects are certainly cars and pedestrians. Real-
world problems such as, for example, visual pedestrian or car detection are
considered to be very tough problems since objects can exhibit a very large
amount of variability. Reasons include viewpoint dependency, intrinsic within-
class variability, object occlusions and image transformations due to lighting
changes or insufficient sensor performance. On the other hand, there are also
advantages that can be exploited, namely the adherence to basic physical laws
that is guaranteed, which makes sure that relevant objects behave in a pre-
dictable way.

For cars and pedestrians there exist numerous proposals for detection and
confirmation strategies. A perfectly accurate and universally reliable object
detection system either for pedestrians or cars remains, however, elusive. In
the following paragraph, some interesting developments in these domains are
reviewed, concentrating on car and pedestrian classification rather than detec-
tion since classification is the focus of the work presented here. Given the vast
amount of research which is being done in this domain, however, this is not
intended to be either a complete or a representative list, but merely a selection
of interesting approaches which serves to highlight the intrinsic properties of the
presented approach in contrast or accordance to those that are mentioned here.

The most basic property that distinguishes different proposals from each
other is the choice of features upon which the classification is based. In analogy
to human and primate vision, classifications are performed using stereo infor-
mation [31] as well as monocular image features such as the outline (shape)
of objects [2], wavelet coefficients extracted by linear filtering [99, 112] or Haar
wavelet decomposition [121], principal component analysis [117] and local orien-
tation coding techniques [40,114], to name just a few. There are also systematic
approaches to automatically select an optimal subset of image features from a
given feature base using either evolutionary algorithms [117] or boosting meth-
ods [121]. Another source of diversity are the methods employed to reach a
classification decision: typical methods are template matching [99], neural net-
works of various architectures [43, 133] and support vector machines [117].

Driver assistance systems typically operate under real-time constraints, al-
though high detection accuracy is nevertheless crucial. In this chapter, a method
to reliably and efficiently detect cars within the driver assistance framework de-
veloped at our research group is described. The framework consists of a number
of independent but interacting modules each of which performs a specialized
analysis task on a monocular, gray-valued video sequence that is common input
to all modules. The classification is based on local orientation coding derived
from local edge information. The feature base was designed, i.e. not constructed
using an automated procedure as mentioned previously, and the classification is
done by an artificial neural network which learns from examples in a supervised

42

way. An initial detection module for vehicles was already in existence within the
general framework; goal of the work presented here is to show how hypotheses
produced by the initial detection module (”regions of interest” - ROIs) can be
evaluated (i.e. classified) by a confirmation module.

4.3 System architecture

Advanced driver assistance applications perform either safety oriented functions
such as lane departure warning, lane change warning and pedestrian detection,
or comfort oriented functions, e.g., traffic sign detection. Among others, spe-
cialized modules have been implemented which carry out all of these tasks.
Common input to all modules are preprocessed data obtained from the input
video image; by using a common feature basis, it is ensured that the image need
only be preprocessed once per frame, thereby facilitating real-time application.

In order to make the car detection fast enough, the process of finding cars
in image sequences is hierarchically organized. The different modules used for
car detection are initial detection (different algorithms provide vehicle hypothe-
ses, i.e. ROIs), confirmation (scale invariant evaluation of detected ROIs) and
tracking (localizing a given ROI in the following video frame). For a detailed
description of the tracking module, see [10, 55] and references therein. Obvi-
ously, the results of the different modules (except the feature extraction) are
not independent and therefore a temporal coupling structure is implemented
to increase the reliability of the car detection results. All specialized modules
use features calculated in the preprocessing step. In spite of the complexity of
the task, the initial detection guarantees fast data reduction such that only a
fraction of an image actually needs to be analyzed thoroughly.

The ROIs generated by the initial detection module are presented to the con-
firmation module which generates a conspicuity measure for each ROI indicating
how likely it judges the ROI to contain a car. The number of initial hypotheses
is thereby reduced depending on the ”strictness” (which effectively expresses the
minimum conspicuity that will still be interpreted as a ”car present” decision) of
the confirmation module. This property is governed by a single threshold value
which must be set according to the desired results. The remaining ROIs are
tracked; any incorrect hypotheses must be eliminated by heuristics governing
the interaction of the initial detection, confirmation and tracking modules: The
tracking module output is continuously compared to hypotheses generated by
the initial detection modules. A confidence value is maintained for each tracked
ROI: the confidence is incremented if the tracked object coincides with a con-
firmed hypothesis, and decremented if it does not. When the confidence decays
below a certain threshold, tracking is turned off for this particular ROI. It is
then assumed that the hypothesis has become invalid or has been invalid all
along. Thus, incorrectly confirmed hypotheses can be eliminated. This heuris-
tic takes several frames to discard incorrect hypotheses, besides the fact that
tracking is a computationally expensive procedure. Therefore, it can make sense
to use a more powerful classification to save effort later. To summarize, the use

43

of a confirmation module yields the advantage of increased speed due to fewer
false detections on the one hand, and on the other hand it provides an effective
way to obtain an independent quality measure of tracked ROIs, which can be
used to calculate more accurate confidence values for each tracked ROI.

4.4 Image analysis and feature selection

The extraction of meaningful object features is an important issue for any image
processing algorithm. In contrast to the first driver assistance applications on
the market (e.g. lane-departure-warning systems) where the preprocessing stage
was directly linked to the application-specific processing algorithms, the car
detection and classification methods described in this chapter are implemented
as modules which are embedded into a larger driver assistance application.

4.4.1 Preprocessing

For such system architectures, the proposal is to calculate a common high-level
feature basis which can be accessed by all image processing algorithms. This
approach has a number of advantages: First of all, the development of robust
task-specific algorithms is simplified significantly; secondly, assuming that the
feature basis has certain invariance properties e.g. with respect to varying light-
ing conditions, such properties will be automatically incorporated in the task
specific algorithms. And thirdly, depending on the number of modules, even
the whole processing time can be reduced due to simplified processing in addi-
tional task-specific image processing algorithms. Furthermore, the calculation
of the feature basis can be implemented on dedicated hardware, so that a general
purpose processing core can be used for the succeeding algorithms.

The chosen feature base consists of horizontal gradients, vertical gradients,
gradient energy, contour points including a quantized local orientation, and line
segments including the mean energy along each segment. The features up to
the contour points are represented in terms of images and are calculated from
gradient filter results (see chapter 1) and the Canny edge detector [11]. For
efficient access of sparse contour points, a linked data structure is used which
is established during the non-maximum suppression algorithm of the Canny-
Filter. The line-segments are obtained by a clustering algorithm that makes use
of this linked representation; the involved calculations are not presented here as
they are beyond the scope of this chapter (but see [10]). Each line-segment is
represented by the image coordinates of its end-points and the mean gradient
energy along that line and therefore provides an extremely sparse coding of an
image contour. For typical road scenarios the average number of line-segments
obtained varies between 250 and 500 (image size: 496x256, minimal line-length:
5 pixels).

44

4.4.2 Features for Classification

To allow for a real-time classification of a given ROI, the data provided by the
preprocessing must be processed further, while still providing enough informa-
tion for a reliable decision. The outcome of this process shall be termed a feature
set in what follows. A sub-optimal choice of extraction procedure can signifi-
cantly reduce classification performance; because of this, some effort was made
to identify suitable features. An upper boundary on the complexity of the fea-
ture extraction is set by the required calculation time, since real-time decisions
are desired. This excludes common methods in image processing like Gabor or
Fourier transforms (see chapter 1), which need not be a disadvantage provided
it is possible to identify cars using only ”primitive” features. By no means it
is assumed or concluded that this is true for more general object recognition
applications.

In order to make object recognition invariant with respect to scaling, it is
demanded that this invariance should be already incorporated into the feature
extraction process.

Histograms

In the course of investigations, an extraction method was identified which is
equally favorable in terms of processing time as well as suitability for classifi-
cation. This method is referred to as the Set of Orientation Energies or SOE
method. It will be described in detail further below.

First of all, the ROI is subdivided into a fixed number of rectangular regions
called receptive fields in analogy to biological image processing. From each
receptive field a set of numbers is extracted by the chosen feature extraction
scheme. The concatenated set of numbers extracted from all receptive fields
in an ROI represents the feature set corresponding to that ROI. The point is
that the number of receptive fields does not depend on ROI size: the larger the
ROI, the larger the receptive fields. This incorporates already at a fundamental
level the requirement of scale invariance: the feature set does not reveal the
size of the ROI it was calculated from. It is evident that a finer subdivision
of an ROI gives higher spatial resolution and therefore more precise spatial
information; on the other hand, it leads to greater processing costs and larger
feature sets, which in turn slow down the classification process. Determination
of the optimal subdivision was achieved by varying the number of receptive
fields in each direction. Starting from 1×1, it was increased until classification
results stopped improving.

The SOE method simply computes the sum of energies of all identically
oriented edges in a receptive field and normalizes this sum by the total energy
of edges within the receptive field. Orientations are quantized, that is, ranges of
angles are mapped onto integers, thus effectively reducing the number of possible
orientations. The output of the algorithm is a number for each orientation,
indicating the ratio between oriented energies of that particular orientation and
the total (summed-up) energy of all orientations, and is therefore a number

45

between 0 and 1. By analyzing the problem class and doing some experiments,
it could be verified that four orientations are sufficient; the algorithm therefore
produces 4 numbers per receptive field.

Invariance properties

To assess the invariance properties of SOE, features from ROIs in natural as
well as artificial video sequences and from respective transformed versions are
computed using a 7x7 subdivision of the ROI. The transfo¡rmations are scaling
(of ROI and image) and translation (of the ROI). Results are measured on ROIs
containing vehicles/objects in two video sequences. One sequence is synthetic,
the other recorded on a highway. Results are averaged over all frames of each
sequence. For the investigation of translation invariance, ROIs are shifted to

Figure 4.1: Example images from synthetic and real-world video sequences used
for the testing of invariances. Typical objects that were used for feature extrac-
tion are in boxes.

the left and to the right by fixed percentages of their width. Without loss of
generality, only left/right shifts are considered since the SOE method does not
prefer certain directions. For testing scale invariance, the image is downsampled
and smoothed by appropriate linear filters (see chapter 1); ROI dimensions are
reduced by the same factor. Two error measures are defined describing the
deviation between a feature set and its transform. One is essentially the mean
squared error (MSE) normalized by the average of the original feature set, but
correcting for the fact that the 4 numbers that are generated per receptive field
are not independent (they must add up to 1.0). Therefore, the MSE is halved;
this method is referred to as corrected MSE. The other measure (referred to as
binary deviation) takes the relative ordering of the orientations into account.
First, it transforms the feature sets to be compared into binary feature sets by
substituting a value of 1.0 if an element is among the two (absolutely) strongest
within a RF, and 0 if it is not. The MSE between the binary feature sets is given
back as an error measure, producing a number between 0.0 and 1.0. The results
on synthetic images of rectangles and triangles on dark background are shown
in fig. 4.2. Note that the method is almost invariant to translation until 20%
of ROI width. The reason is that, with a 7x7 receptive field configuration, one
receptive field corresponds to 28% of ROI width. As long as critical features stay

46

within the same receptive fields, no changes can occur. Notable is furthermore
the low error introduced by scaling.

0
1
2
3
4
5
6
7
8

1,00 1,50 2,00

Shrinking factor
E

rr
or

0

10

20

30

40

50

60

0 20 40 60

Translation Percentage

E
rr

or

Figure 4.2: Errors introduced into a feature set by scaling (left) and translation
(right). Measurement was done on synthetic images Shown is the binary devia-
tion (triangles) and the corrected MSE (squares). Both measures are explained
in the text.

0

10

20

30

40

50

60

70

80

90

1,00 1,50 2,00

Shrinking factor

E
rr

or

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60

Translation percentage

E
rr

or

Figure 4.3: Errors introduced into a feature set by scaling (left) and translation
(right). Measurement was done on real-world images. Shown is the binary
deviation (triangles) and the corrected MSE (squares).

Results on real-world images (fig. 4.3) are poorer, as might be expected
since translation introduces new and unpredictable content into an ROI instead
of empty background. At first glance the SOE method seems to perform poorly
under scaling in particular, but at second glance one can perceive that the
structure of a feature set remains quite unaffected. This becomes apparent
when considering the binary deviation measure. which changes by only 15%
under 50% scaling; this may well be the reason why classification performance
is quite independent of ROI size (see later sections, especially fig. 4.5).

4.5 Generation of hypotheses

The generation of vehicle hypotheses is the first processing stage within an
architecture for car detection. In this section, the algorithms generating the
ROIs presented to the confirmation module are briefly discussed.

47

Two different algorithms for generating initial vehicle hypotheses were de-
veloped which are based on different image features. One algorithm employs the
line-segments calculated in the preprocessing stage for producing a list of poten-
tial vehicle positions: The middle of each approximately horizontal line-segment
serves as a starting position for searching lateral vehicle boundaries. Based on
the location of the line-segment in the image, the image region occupied by a
vehicle at that location is estimated. In this region a one-dimensional signal is
calculated by vertically projecting horizontal gradient information. Extraction
of local maxima, analysis of maxima positions and signal values finally leads to
either acceptance or rejection of that region.

The other strategy for calculating potential vehicle positions utilizes esti-
mates of lane borders provided by another module and is therefore based on
higher-level knowledge. It evaluates a robust measure of mean gray-value in
each row (up to a maximal predefined distance from the ego-vehicle) for each
lane, resulting in hypotheses for vertical vehicle positions for each detected lane.
In order to suppress false detections due to horizontal shadows, the same mech-
anism for evaluating the presence of horizontal vehicle boundaries as in the
previously sketched algorithm is employed.

4.6 Requirements a confirmation module

For the implementation of the confirmation module, the following properties are
required:

• adaptivity: can be trained by examples

• flexibility: able to generalize when dealing with previously unseen data

• good performance: capable of real-time decisions

• robustness: up to a degree, invariant to scale, translation and a wide range
of lighting conditions.

• independence: should not rely on other modules

In the light of the explanations given so far, it is evident that the last three
constraints are fulfilled by construction: the performance constraint is taken
care of by the way input features for the confirmation module are generated,
provided only that the confirmation itself can be implemented efficiently (which
shall be shown later). The robustness constraint is satisfied on the one hand by
using the results of the preprocessing stage which already exhibit a great deal of
invariance properties, and on the other hand by the invariance properties of the
feature sets extracted from each ROI which serve as inputs to the confirmation
module. Lastly, the independence property is ensured by the fact that only the
input feature sets determine the decision of the confirmation module. The first
two constraints are satisfied by the implementation of the classification function
within the confirmation module which will be described in the next section.

48

4.7 The confirmation module

The previously stated requirements on the confirmation module do not specify a
particular implementation, and indeed several alternatives present themselves,
most prominently multilayer perceptrons (MLPs) and support vector machines
(SVMs). For now, issues that are independent of this particular choice are
discussed.

4.7.1 Training data

The confirmation module is required to decide whether an ROI that is presented
contains a car or not, therefore distinguishing two classes of objects (cars and
noncars) from each other. Training examples consisting of an ROI and a class
label (0.0 or 1.0) are generated from a significant number of different videos of
typical highway scenes. Four disjunct datasets termed Dtrain, Dval, Dtest and
Dext are created, each containing 5000 examples, which are randomly taken from
a larger database of over 100000 examples. 50% of the examples in each set are
positive examples. The positive examples are labeled manually, the negative
examples are produced using the initial detection module: for each frame of a
video sequence, its output (a collection of ROIs) is compared to the previously
labeled positive examples. All ROIs that do not coincide (within a certain
tolerance range) are added to the database as negative examples. In this way, it
is ensured that the negative examples used for training are comparable to those
encountered during application. Furthermore, if the initial detection module
should be altered, negative examples can simply be generated automatically by
using the new initial detection module.

The positive examples must fulfill a number of specifications. Positive ex-
amples must have a certain width/height ratio (close to 1 for cars), contain only
cars and no trucks; they must include the pronounced lower edge of cars, enclose
all of the rear view of a car tightly and vary over all scales. The last condition
is a precaution: although the feature sets are roughly invariant to scaling, it is
prudent to account for small deviations by including training examples of all
sizes. For negative examples, all conditions are fulfilled by construction.

4.7.2 Decision making

One expects the output of the confirmation module to be a continuum of values
between the labels for the two classes. In order to interpret this as a decision in
favor of a particular class, a threshold is defined, and the decision for a particular
class is then expressed by a module output that exceeds or does not exceed the
chosen threshold. The underlying assumption that justifies this simple method
is that the degree of match between objects and learned models is at least
approximately encoded by the euclidean distance between the module output
and the corresponding class label. If this assumption holds, the module outputs
can be expected to be strongly centered around the class labels (in this case,
a strongly bimodal distribution is obtained), and an optimal threshold can be

49

0,0E+00

2,0E-05

4,0E-05

6,0E-05

8,0E-05

1,0E-04

1,2E-04

1,4E-04

1,6E-04

0 1000 2000 3000 4000 5000

Number of connections
E

xe
cu

tio
n

sp
ee

d
(s

)

Figure 4.4: Dependence of execution speed on NN complexity.

applied that separates the outputs with minimal error. This assumption needs
to be checked explicitly.

Implementation of the classification function

For the implementation of the classifier, a MLP is used which converges onto
a single output neuron. This choice is made because better classification speed
can be achieved by NNs than by SVMs while obtaining comparable classification
accuracies. One hidden layer is used, and all activation functions are of logistic
sigmoidal type. For training, a modified form of the Rprop learning algorithm
[62] is used. The layers are fully connected, and all neurons in the input layer are
origins of shortcuts (connections that bypass one or more layers) to the output
neuron.

0

500

1000

1500

2000

2500

3000

0 50 100

Roi size in pixel

F
(x

)

0

1

2

3

4

5

6

7

0 50 100

Minimal ROI size

 C
la

ss
. e

rr
or

Figure 4.5: Dependence of classification accuracy on ROI size. Left: size distri-
bution of examples in Dtest. Car ROIs are depicted by squares, non-car ROIs
by triangles. F(x) denotes the cumulative distribution function, i.e. the number
of ROIs wider than x. Right: classification accuracy plotted against the lower
bound on ROI width.

Initially, a population of NNs with different randomly drawn, small weight

50

values is generated. Each member of the population is subjected to an iter-
ated optimization loop, a step of which consists of NN training and subsequent
magnitude-based pruning [103]. This simple pruning heuristic was chosen be-
cause initial attempts using a sensitivity-based method yielded poorer results at
higher computational cost and were therefore abandoned. For a review of prun-
ing techniques, please see [103]. The goal of this procedure is to obtain a NN
that has as few connections as possible (because execution speed scales linearly
with the number of connections in the used implementation, see fig. 4.5) while
still being capable of the best possible classification. Motivated by general state-
ments about the learning capacity of MLPs [103], the unoptimized NNs have
about 5000 connections. Since it is a difficult issue to show analytically which
number and size of hidden layers is optimal for a specific problem [4, 103], no
attempt is made to tackle it; it is left to an improved optimization technique.
For this purpose, evolutionary NN optimization methods seem the methods of
choice. For a comparision of magnitude-based pruning to an evolutionary NN
optimization method combining the abilities to reduce and increase the size and
complexity of NNs, see chapter 7.

Inputs to the NN are the feature sets that are generated in the previ-
ous processing step of feature extraction, so the input layer must have the
same size as the feature sets which is 196. For the implementation of the
NN, the ReClaM package of the freely available SHARK library (http://shark-
project.sourceforge.net) is used.

NN Training

NN training is embedded into the optimization loop described above. For train-
ing, the MSE is used as an error measure. As usual, weights are initialized to
random small values between -0.05 and 0.05 with each NN of the initial popu-
lation using a different seed value for the random number generator. MSE on
Dtrain is minimized for 100 epochs, whereupon the net with the best MSE on
Dval is selected as training result. Convergence is very fast; in general, no more
than 10 epochs are needed until training achieves an overall error smaller than
10% on Dval.

Optimization

The size of the initial population of NNs is set to 250. The size of the hidden
layer is chosen to lie between 20 and 25 and is uniformly drawn for each NN of the
initial population. After every training, magnitude-based pruning is applied to
all NNs. One pruning step consists of the elimination of a percentage of weights;
those 10% of weights are eliminated that have the smallest absolute value. All
evaluations of optimization results are performed using the classification error
(CE) on Dtest. The result of the optimization is a statement about the network
capacity needed for this particular problem class: it turns out that the number
of connections can be reduced by approximately 55% while retaining optimal
CEs, i.e. comparable to those obtained by repeatedly training the unoptimized

51

0

20

40

60

80

100

120

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Threshold

C
la

ss
ifi

ca
tio

n
E

rr
or

Figure 4.6: Error measures depending on applied decision threshold. False posi-
tives are depicted by circles, false negatives by squares. The overall classification
error is indicated by triangles.

NNs with different initializations and choosing the best one as reference. At
10% of the original connections, NNs are still capable of an overall CE of about
95%. But, surprisingly, even NNs with fewer than 2% of the original connections
are able to produce CEs of about 90%.

When talking about results, some terms should be clarified first since they
are not used coherently in the literature: The false positive/negative rate is the
percentage of positive/negative examples that are classified wrongly. Analo-
gously, the true positive/negative rate denotes the percentage of correctly clas-
sified positive or negative examples. Fig. 4.5 (right) supports an assertion made
earlier: the approximate independence of the CE on ROI size. What one can
furthermore perceive is that CE actually falls below 3% when excluding ROIs
smaller than 30 pixels. As shown by fig. 4.5 (left), such ROIs are quite common
and their influence on the classification error is therefore notable, whereas they
typically do not contain cars but artifacts produced by the initial detection.
Fig. 4.6 shows the dependence of the classification error as well as the false pos-
itive and false negative rates as a function of the applied decision threshold. As
can be perceived from the figures, the best overall classification error is 3,8%.
Of course it can make sense to accept a higher overall error rate in order to min-
imize the false negative or false positive rates, depending on the demands of an
application. Fig. 4.7 (left) shows representative optimization results. Notable is
the clear trade-off between NN complexity and classification accuracy. Fig. 4.7
(right) shows the receiver-operator characteristic (ROC) of the best optimized
NN.

4.8 Performance, benefits

On a Pentium II PC with 1 Ghz under Windows NT, using the MS Visual C 6.0
compiler, the largest NN from the optimization runs takes about 0.15 ms for one
classification. The smallest optimized network that gives overall classification
errors of under 6% takes 0.022 ms per classification. This results from the fact

52

that the net has only about 10% of the weights compared to the unoptimized
NNs, with a corresponding order-of-magnitude increase in speed. The smallest
NNs that yields an overall classification error of under 10% needs 10−4 ms for a
classification. These extremely fast classification times make the optimized NNs
applicable for brute-force search methods that scan the whole image at multiple
scales to reliably detect all objects of interest (see chapter 8 for an elaboration
of this idea). It should be noted, however, that it cannot be expected that this
result is extensible to other objects than cars since the investigations suggests
that the problem class is easily separable.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50

Classification error

N
r

of
 c

on
ne

ct
io

ns

0,5

0,6

0,7

0,8

0,9

1

1,1

0 0,5 1

false positive percentage

tr
ue

 p
os

iti
ve

 p
er

ce
nt

ag
e

Figure 4.7: Left: Typical optimization results. Right: Receiver-operator char-
acteristic of the best optimized NN

Together with the time needed for feature extraction, which is (averaged
over all ROIs in the training sets) 0.3 ms, the object detection module takes
between 0.3 ms and 0.45 ms for one operation, depending on the complexity
of the used NN. Another point is that the optimization procedure generates a
sequence of classifiers that can be applied successively to candidate ROIs, thus
generating hypotheses of increasing reliability at negligible computational cost,
since the feature set needs to be calculated only once. Classifiers of differing
accuracy and complexity can be selected to enhance different modules of the
system according to speed and accuracy requirements.

4.9 Conclusion

It was shown that car classification is a task that can be solved to very good
accuracy and at high speed by NN classifiers. From the front of trade-off solu-
tions that was obtained, NNs can be selected according to different demands on
speed and classification accuracy. Extremal NNs containing only a few dozen
connections are still able to give reasonable accuracy at negligible computational
cost. These findings make it plain that car detection and classification can easily
operate even under real-time constraints. In the face of the enormous variety of
possible traffic situations, it is, however, not to be expected that the approach
described here can lead to perfect detection accuracy under all circumstances.
Therefore, further studies will be devoted to the issue of how the performance

53

of the whole driver assistance framework can be improved by the enhanced ob-
ject detection, and how to make object detection more stable by considering
additional information provided by other modules and information sources.

54

Chapter 5

Object detection with
adaptive saliency maps

5.1 Summary

This chapter presents an initial detection architecture which is strongly inspired
by the concepts of feature-based attention, biased competition and simultaneous
bottom-up and top-down processing. It is not directly applicable as a real-time
object detector since its computational complexity is rather high; nevertheless
it is a powerful tool for building up more sophisticated mechanisms of object de-
tection and scene understanding. The architecture is called an adaptive saliency
map and is intended to perform bottom-up scene understanding and top-down
guided target object search. It operates on gray-level images and integrates
orientation, contrast and intensity features in a parametrized fashion over mul-
tiple scales. The parametrization can be adapted in order to put more emphasis
on certain image features than on others; this mechanism aims to make tar-
get objects as salient as possible. This is achieved by competitive interactions
strongly inspired by the ”biased competition”-hypothesis of visual attention.
The map output depends in a nonlinear and analytically intractable way on the
parameters. Therefore, the evolutionary strategy of covariance matrix adap-
tation (CMA) is applied to optimize (learn) the parameters for a given target
object class. Although analytical gradient information is not available (and,
indeed, is not necessary for this method), convergence is quick, and significant
increases in detection performance are observed when applying the saliency map
to improve the initial car detection algorithm used in chapter 4.

55

5.2 Introduction

In this chapter, a new saliency map architecture for bottom-up scene analysis
is presented. The aim is to quickly identify regions in an image which stand out
from the background and merit a ”closer look”, possibly by an object recogni-
tion system. Conversely and more practically, parts of an image that are not
interesting for object recognition are excluded from further analysis.

Since it would be impossible to do this for all types of conceivable objects,
the model is parametrized, and (given sufficient training examples) there is a
systematic way of learning parameter values which will enhance specific object
classes while suppressing others, thus making target objects ”pop out” from
the background. In this way, a component of top-down modulation is intro-
duced, enabling the model to attend to certain image features in a way similar
to feature-based attention [16, 25] mechanisms in humans and primates. The
implementation of the top-down process is strongly inspired by the ”biased
competition” [22, 74] account of visual attention. In human and primate vi-
sion there exists a symbiosis between top-down (concept-driven) and bottom-up
(data-driven) processes. There is overwhelming evidence that almost all visual
processing down to such low-level stages as the striate cortex can be strongly in-
fluenced by top-down signals, see e.g. [86] and references therein. In the absence
of top-down modulation, tasks such as object categorization or the allocation of
scan-path trajectories have been demonstrated to operate in a predominantly
bottom-up fashion [100,119].

5.2.1 Biological bottom-up scene analysis

This dichotomy has been especially thoroughly investigated experimentally for
visual search experiments, in which (roughly speaking) subjects are required
to find certain target items defined by particular features or combinations of
features among others (so-called distractors). It turns out that certain targets
are always found easily and quickly, whereas others require subjects to examine
each item in a display separately, taking up more time in the process. It has
been concluded that the knowledge of a target object’s nature can influence
low-level processing in such a way as to make desired objects stand out from a
background composed of distractors. Nevertheless, there are limitations on this
mechanism which mainly depend on the degree of dissimilarity between target
and distractor items. The similarity measure, however, is highly complicated
and reveals the detailed preprocessing that is performed upon a retinal image.

5.2.2 Computational modeling of bottom-up scene analy-
sis

The model presented here is inspired by previous proposals for bottom-up scene
analysis [66, 67, 135, 136]. It extends those models by a true ”biased competi-
tion” mechanism, allowing for more efficient distractor suppression, and a new

56

learning algorithm suited to the highly nonlinear way in which the output now
depends on the parameters.

The previous models put great emphasis on image processing and system-
level simulation rather than the modeling of neural interactions themselves and
have (among other purposes) been successfully applied to the rapid detection
of vehicles in cluttered images [64] as well as to the explanation of scan-path
trajectories of the human eye [102]. Common to all such models is the philosophy
of integrating information from as many visual feature cues as possible. There
also exist models which simulate the interaction between top-down and bottom-
up interactions at an intermediate neural level [21] with intriguing results.

The presented model, however, is more in the spirit of [64, 67, 135, 136] be-
cause it places emphasis on correct image processing, integration of a wide range
of visual feature cues and the nature of interactions existing between various
visual cues.

Concerning the practical application of saliency maps, the most immediately
apparent use is to restrict the search space of whole-image classifiers, i.e. classi-
fiers that are applied at every location of an image over multiple scales in order
to detect objects but bypass an initial detection stage. By using, e.g. convolu-
tional network architectures (see [84] or chapter 6), this is well within the range
of real-time processing on present-day standard computer hardware. Saliency
maps can significantly speed up this process (as, for example, described in a
recent publication [35]) as well as give additional hints as to whether a classifi-
cation was a correct one.

5.2.3 Overview of the proposed model

First of all, terms will be precisely defined: input to the model comes from a
video image source consisting of a sequence of frames. The model analyzes its
input in a number of different ways termed modalities. For each modality, a
number of feature maps is computed in a modality-dependent way (from single
or multiple frames) at a predetermined number of spatial scales termed pyramid
levels. Feature maps are then downscaled to a fixed size that is equal for all
feature maps and normalized to a range between 0 and 1. This means deter-
mining the pixel of maximal response in all feature maps of each modality, and
then dividing all maps of the modality by that value. For each feature map
there exists a corresponding weight; a feature map is multiplied by its weight
before being subjected to the competition stage, where it is combined with other
feature maps of the same modality (possibly being at a different pyramid level,
though) using center-surround differences. Thus, a set of new feature maps,
termed map responses is obtained for each modality. Each pyramid level has its
own predetermined intrinsic scale; each response is repeatedly filtered a certain
number of times by a difference-of-Gaussians filter whose bandpass properties
(see chapter 1) are chosen to enhance elements of the proper intrinsic size,
thereby effectively implementing a rivalry between long-range lateral inhibition
and short-range lateral excitation. As a last step, responses of all modalities are
summed up and normalized to a range between 0 and 1, creating the saliency

57

+

normalization

Contrast Orientation

...

Other modalities

Lateral competition

Object model
Weighted

summation,
normalization

Input image

Saliency map

Figure 5.1: Overview over the saliency map model.

map computed from one frame. An overview over this process is given in fig. 5.1.
By ensuring that the feature maps are weighted before competition, a bias

is introduced into the model: those feature maps with higher weights will have
a better chance of winning local competitions. This is intended to be used for
efficient distractor suppression: if a feature map wins the competition against
another in a local neighborhood, usually the losing map will not appear at all
in the final response but be strongly suppressed. Moreover, the competition is
only local: other results may emerge in other regions of a response depending
on the image source, but competition will be globally biased towards the feature
map with higher weight.

The question arises immediately how to adapt the weights of the model
in order to enhance certain object classes: For the time being, investigations
were concerned with supervised learning strategies only. It is obvious that this
architecture is unsuited for gradient-based learning, because the repeated center-
surround filtering and subsequent normalization make it impossible to compute
an analytical expression for error gradients. An important point of this chapter
is therefore the choice of an appropriate learning strategy. For this purpose, the
evolutionary strategy of Covariance Matrix Adaptation (CMA) [47] is employed.
An analytical gradient is not required for CMA, yet it will be shown that CMA is
nevertheless quick to converge. It can therefore be used efficiently as a learning

58

algorithm in general saliency map models and related tasks in computer vision.
This section presents the saliency map model and a learning strategy for it

along with demonstrations of the model’s capabilities and limitations. It will
be the scope of further investigations to test and optimize the model in detail.

5.2.4 Outline

This chapter is structured as follows: In section 5.3, a detailed description of
the proposed model as well as the used image processing algorithms is given.
Section 5.4 deals with supervised learning of the model’s weights, its possibilities,
limitations and practical upshots. Section 5.5 briefly describes the evolutionary
learning algorithm that is employed, outlining its necessity as well as its domains
of application before giving a sketch of its working principles. In section 5.6,
simple test scenarios and performance evaluation measures are described, which
are evaluated in section 5.8. A discussion of results as well as further extensions
and improvements to the model is conducted in section 5.9. Details on image
processing methods can be found in section 5.10.

5.3 Saliency map architecture

As the basic architecture of the proposed model has already been described in
section 5.2.3, the focus of this section will be on a detailed description of image
processing techniques used for obtaining feature maps in each modality as well
as a description of the competitive interactions between them. First of all, the
common properties of all modalities will be described.

5.3.1 Modality-independent processing

Let us assume a total of M modalities. Each modality performs identical trans-
formations of the image source at smax spatial scales. At each scale, n feature
maps are generated by applying several modality-dependent transformations
(see section 5.3.2) to the image source. The results (whose dimensions will
depend on the current spatial scale) are then downscaled to a fixed size (see
chapter 1 for details on downscaling) which is identical for all feature maps1.
Thus, a total of Mnsmax feature maps will be generated. For each modality, all
its feature maps will then be linearly normalized to a range between 0 and 1.
For each spatial scale s ∈ [0, . . . , smax], an intrinsic size iS is defined; it is this
size which determines the scale of local competition.

This is implemented in a twofold way as difference-of-Gaussian (doG or
center-surround) filtering: first, in the process of generating map responses from
feature maps, each feature map at level s is combined by a center-surround
operation with all other feature maps of level s and, provided that it exists,
level s + 1. Then, several local competition steps are applied the to resulting
map responses. For generating those responses, all subsets of two feature maps

1The smoothing filter for downscaling is given in section 5.10

59

from the same modality are selected. One feature map is convolved with a
Gaussian smoothing filter (its width determined from is, see section 5.10) and
the other by a Gaussian smoothing filter with doubled standard deviation. Each
convolution result is multiplied with the weight corresponding to the feature map
it was computed from. Then, the pixel-wise difference between both results is
computed and stored as a map response.

Map responses are subjected to center-surround filtering for f times, each
result being input to the next center-surround operation. Pixel values which
are smaller than zero are set to zero. The widths of the Gaussians are again
determined by is according to section 5.10.

The rationale behind choosing this particular kind of competition is ex-
plained in section 5.3.3. Note that—since the widths of the center and the
surround filters are large—downscaling can be performed first, and applying
repeated center-surround filtering to the downscaled feature maps afterwards.
This is done in order to increase the speed of the operation compared to filtering
full-sized images.

Finally, all responses are summed up and normalized to a range between 0
and 1, producing the saliency map. For details, see section 5.10.

5.3.2 Modality-dependent processing

Inspired by the huge variety of feature-sensitive cells that have been found in
the visual cortex of mammals [125], the proposed model aims to integrate as
many local visual properties of the image source as possible when constructing
the saliency map. Modalities can be added easily since no assumptions are made
about them except that feature maps are required to have certain dimensions
and be normalized to values between 0 and 1. For the time being, only three
are implemented in order to demonstrate the capabilities of the model while
keeping execution speed at a reasonable level. These modalities analyze the
image locally for gradient energy (see chapter 1 or [10]), intensity and local
orientation implemented by a steerable pyramid [32]. Among modalities that
should definitely be included in future versions are color and primitive motion
cues.

Gradient energy

This modality computes local contrast based on the nonlinear gradient energy
operator (see 1.5.1) using the algorithm from [10]. One feature map Gs(x, y) per
level s is generated from the outputs of one-dimensional horizontal and vertical
linear gradient filters. A threshold is imposed: pixels Gs(x, y) with energies
lower than the threshold are set to zero. One feature map is computed for each
level. For details of this modality’s processing see section 5.10.

60

Intensity

This modality simply returns a histogram-equalized gray-level version of the
image source. Since in this particular implementation the image source already
is a gray-level image, this modality computes little more than the histogram-
equalized version of the image source. This means that one feature map is
computed per level.

Local orientation

This modality computes local orientation and local spatial frequency from the
outputs of steerable filters (see 5.10) of the order 2, which means that three fea-
ture maps are produced per level. It has been argued that preattentive human
vision can only coarsely estimate local orientations in terms of a few orienta-
tions [134], and it has been attempted to model this by choosing three filters
which respond best to horizontal, diagonal and vertical orientations. Although
responding best to their preferred orientations, the used filters have coarse an-
gular resolution so that any given orientation in the image will produce a signal
in at least one filter, making sure that no orientations are disregarded. In effect,
what each response measures is how much orientation and spatial frequency
change in a local neighborhood.

5.3.3 Competition

Competition is implemented by repeated center-surround filtering of a map re-
sponse. This is roughly analogous to neural mechanisms of short-range exci-
tatory and long-range inhibitory connections and performs bandpass filtering.
The number of repetitions is set to f = 8, and pixels which have values smaller
than zero are set to zero after each step.

Motivation for this particular kind of implementation is the idea of cre-
ating competition between feature maps. This competition can be influenced
by enhancing the weights of certain feature maps, giving them an initial ad-
vantage over others. Due to the iterative nature of the competition process,
local responses which ”lose” are eliminated from the final map response almost
completely while the ”winners” are enhanced correspondingly. This mechanism
leads to a more efficient, almost complete suppression of local features asso-
ciated with distractors and incorporates the principle of ”biased competition”
which is observed abundantly within the human and primate visual cortex [74].
Due to the parametrized nature of the model, this is no loss of generality since,
after a change of weights, only the competition steps need to be repeated to
obtain a different saliency map adapted for different targets and distractors.

5.4 Learning

The term ”learning” refers to the task of adapting the weights of the proposed
model in such a way as to enhance target objects while suppressing non-targets.

61

It should be clear that this will only be possible if targets and non-targets are
sufficiently dissimilar in at least one response. It is important to keep in mind
that the saliency map is not intended to perform classification: it therefore
has no concept of local geometric structure of objects. Any enhancement or
suppression of object classes happens purely by giving certain feature maps
competitive advantages over others, i.e., raising or lowering their respective
weights. Thus, for example, cars might be distinguished from lane markings
but a distinction between different types of cars is not possible and indeed not
intended.

There have been some attempts to implement such adaptivity into saliency
maps, most notably in [66]. There, a model is described in which responses
are weighted after they are computed (i.e. after competition), and an additive
learning rule is used to update weights iteratively. While the reported results
are promising, this model can only suppress non-targets linearly (by lowering
the weights of feature maps associated with non-targets), whereas a more thor-
ough suppression is desirable. Moreover, since competition is not influenced by
the weighting, local features that have been eliminated by competition cannot
enter into the final saliency map at all. In contrast to this, the model proposed
here can suppress distractors more thoroughly by influencing the competition
mechanism. Furthermore, by changing the weights and performing another com-
petition step, hitherto suppressed features may appear in the saliency map at
the cost of others. It is only fair to state that the competition step is computa-
tionally quite expensive (although modern graphics hardware can dramatically
speed up the necessary convolutions), so there might be good reasons for avoid-
ing it.

In [66] the concern is raised that learning the weights in a saliency map
will reduce the general applicability of the map: up to a point, this is true,
yet the freedom to choose weight values includes the case of setting all weights
to equal values. Thus models without bias can be reproduced. Furthermore,
it can often be very useful to have a more specialized model exhibiting object
class sensitivity. Lastly, the parametrization can be changed at will, enabling
the user to switch between different weight configurations exhibiting sensitivity
to different target object classes.

Another challenge is the fact that the model (through the repeated center-
surround filtering) not only depends in a strongly nonlinear way on the weights,
but that the analytical form of this dependence is unavailable. It is therefore
impossible to obtain the gradient of the saliency map performance (defined in
section 5.4.2) with respect to the weights. Recently, evolutionary strategies have
become increasingly popular for solving difficult optimization problems where
no gradient information is available, such as the structure optimization of neural
networks presented in chapter 7 or in [61]. An appropriate evolutionary learning
strategy is therefore employed to overcome the difficulty of unavailable gradient
information.

62

5.4.1 Training data

In order to make supervised learning methods applicable, training examples
must be selected and labeled, i.e., assigned a number which encodes the class
membership of every example. Since the goal of learning in saliency maps is to
distinguish targets from non-targets, just two classes need to be included in the
training data: ”target” and ”non-target”. These classes are encoded by 0 for
non-targets and 1 for targets. Two datasets are created, a training set Dtrain

and a validation set Dval. Both contain an equal number Nex of target and
non-target examples. Whereas the training set is for learning, the validation set
serves to verify the results using data which were not considered by the learning
algorithm. In this way, mathematical statements about the generalization of a
learning algorithm can be derived, see e.g. [82]. No such analysis was carried
out for this investigation, and the validation set is simply used to select a weight
vector (from all vectors produced in the course of training) that produces the
best fitness on the validation set. Thus, a set of weights with good generalization
behavior is selected. Each example i ∈ {1, . . . , 2Nex} in a dataset contains a
reference to an image imgi, a class label li ∈ {0, 1} and the coordinates defining
a rectangular region within that image, jointly denoted by ri. The rectangular
region encloses an object which belongs to the class encoded by li. For more
details on the training databases that were used in simulations see section 5.6.

5.4.2 Fitness function

Central to the learning task is a quality measure (sometimes called fitness
function) assigning a scalar fitness value to a given set of weights. Formal-
izing this, given a set of weights (more precisely, a number x ∈ Rw assuming
a total number of w weights), the fitness function is defined as a mapping
f : Rw ⊃ [0, 1]w
→ R+. An usual convention is to construct the fitness function
in a way that assigns lower values to better (with respect to the learning task)
weight vectors. Therefore the task of the learning algorithm is to find weight
vectors that have the smallest possible fitness value.

The fitness function used here is a very simple one, based on the premise
that targets should be enhanced and non-targets should be suppressed. Given
a dataset D of training examples as described in section 5.4.1, the fitness is
calculated by

f(D) =
Nex∑
i=1

∑
x∈ ri

|li − mimgi
(x)| (5.1)

using the saliency map mimgi
(x) calculated from the image imgi associated with

an example.

5.5 Covariance matrix adaptation

Evolution strategies [5] are one of the main branches of evolutionary algorithms,
i.e., a class of iterative, direct, randomized optimization methods inspired by

63

the principles of Darwinian evolution theory.
Due to space limitations, only the principles and performance considerations

of the highly efficient evolutionary strategy of Covariance Matrix Adaptation
are sketched here. Details can be found in [47].

CMA is an iterative, direct (only model responses, not gradients are needed)
strategy repeatedly performing the following steps (termed generations): start-
ing with a parent population consisting of µ individuals, each of which cor-
responds to a particular choice of real-valued parameters (in this case: map
weights), an offspring population is generated in a partly probabilistic way. The
offspring population contains λ > µ individuals. This process is termed varia-
tion. The fitness of the offspring is calculated and used for selecting µ individuals
for the new parent population. In addition, the result of the fitness evaluations
is used to adapt the distribution which governs variation, essentially a mul-
tidimensional Gaussian distribution. Using the new parent population, these
steps are repeated until a termination criterion is met. In practice, the process
continues until a predetermined number of iterations has been performed.

The adaptation of the distribution which governs variation is a key ingredient
of CMA. The main idea is to alter the distribution in a deterministic way,
increasing the probability that steps in parameter space that led to the current
population are repeated. In doing this, the search path of the population over
the past generations is taken into account, where the influence of previous time
steps decreases exponentially.

The performance of CMA depends almost exclusively on the fitness evalua-
tions of parent and offspring populations at each iteration: λ fitness evaluations
are necessary for this purpose. Therefore the algorithm is efficient if the fitness
evaluation can be performed efficiently. This is not the case in the present im-
plementation; as a consequence, the number of examples that can be used for
training the model is limited.

A solution to this lies in massive parallel processing: in principle, each fitness
evaluation within one generation could be performed on a separate computer
in a network since no interdependencies between single evaluations exist. The
maximal gain in processing time is bounded by the number of offsprings in each
generation. For the experiments described here, parameters of µ = 3 and λ = 21
were used. This suggests that a 20-fold increase in performance can be achieved.

5.6 Test scenarios

For testing the performance of the proposed model and its benefits compared
to other approaches, a test scenario based on a collection of real-world video
sequences showing typical highway traffic scenes was created. All videos are
gray-valued and have a resolution of 360x288 pixels. Experiments are (for the
time being) limited to comparatively small numbers of examples for reasons
given in 5.5. Lack of sufficient numbers of examples is of course a drawback
since the statistical guarantees for generalization performance depend on this
number. However, the purpose of the conducted experiments is rather to illu-

64

minate the working mechanisms and capabilities of the proposed model than to
perform rigorous benchmarking. Furthermore, the experiments are intended to
demonstrate how the detection of target objects can be significantly improved
by learning specialized sets of weights, and this can be shown even with com-
paratively few examples.

A collection of four video sequences of highway traffic scenes was used for
collecting training examples. Each sequence contains about 200 images. Target
objects are cars; non-target objects consist of a selection of all conceivable other
objects. A selection was chosen for non-targets which includes objects that are
most similar to cars (e.g., lane borders or traffic signs) but also blank road parts
and uniform textures like parts of trees. It is clear that this was done on an
ad-hoc basis, but with the given restriction on the number of training examples,
no other strategy was possible. By evaluating the performance of the learned
sets of weights on an independent validation set, an effort is made to prevent
overfitting and to show that the results are not restricted to the particular choice
of image source. Nex is set to 50, which is a value that allows reasonably fast
learning. An experiment was conducted, again comparing fitness values with
and without learning to each other. The visual inspection of the corresponding
saliency maps is most instructive, please see fig. 5.2.

5.7 Performance evaluation

The evaluation of saliency map performance is performed using the initial car
detection system described in chapter 4. The saliency map performance is mea-
sured by how much it can improve the detection results, i.e., how many false
detections can be rejected and how many misses can be found. The reason
for this rather roundabout way of performance testing is that a saliency map
is not a classifier; it is intended to mark ”interesting” regions based on the
conjunction of simple locally dominant image features. As a consequence, the
detection of regions containing non-target objects that have locally the same set
of dominant features (for example, cars and rectangular traffic signs could be
mentioned here) is nothing unusual; if one were to simply scan the saliency map
for rectangular regions of certain sizes whose fitness value 5.1 exceeds a thresh-
old, one would end up with a large number of false detections. By testing the
saliency map on an already restricted (by the initial detection) set of regions,
this problem is circumvented and, what is more, the practical use of a saliency
map can be demonstrated by improving an already working system.

5.7.1 Performance measures

Two datasets of ROIs (regions of interest) are provided with each video se-
quence in the test set described in section 5.6: a ground-truth dataset and a
dataset generated by the initial detection module described in chapter 4. Each
dataset contains the coordinates of rectangular ROIs in single frames of one
video sequence. The ROIs in the ground-truth dataset are manually generated

65

and correspond to image regions containing car back-views. It is important to
keep in mind that the ground-truth dataset contains all car views present in
each frame; by inference, any ROI within a frame that does not coincide with
an ROI in the ground-truth dataset cannot contain a view of a car. By using
the ground-truth dataset, it is therefore possible to group ROIs of one frame
into several classes:

• false positives - ROIs produced by the initial detection which are not
contained in the ground-truth dataset

• true positives - ROIs produced by the initial detection which are contained
in the ground-truth dataset

• misses - ROIs in the ground-truth dataset but not found by the initial
detection

The fitness value (5.1) which is based on an evaluation of the saliency map is
calculated for each ROI of one frame; ROIs are categorized by checking whether
the calculated ROI fitness exceeds a certain threshold. This categorization is
now used to confirm or to correct the initial detection results for each type of
ROI given in the list shown above. By varying the threshold that is applied, a
several kinds of curves similar to receiver-operator-characteristics [126] can be
obtained, from which the performance of the saliency map as well as the best
threshold can be read off.

Figure 5.2: Distractor suppression by a trained saliency map. Left: original
video image, middle: all saliency map weights set to 0.5, right: saliency map
using learned weights. Observe that the right lane border is almost completely
suppressed. This is possible because it is mainly encoded by the modality for
local orientation; thus, a reduction of the weight for that particular orientation
at the appropriate scale is sufficient for effective suppression.

5.8 Results

As one can perceive, it is possible to impose a saliency map threshold (e.g., 0.4)
which strongly suppresses false positives while leaving true positives virtually

66

unchanged, as can be seen in the upper half of fig. 5.3. In addition, fig. 5.4
shows that at this threshold value, nearly all missed detections are ”classified”
as cars by the saliency map. The later fact cannot be easily exploited since
in an online situation, the misses are unknown because ground-truth data is
not available; nevertheless, is has been demonstrated that a re-examination of
detected ROIs by a saliency map (with a suitable threshold) can significantly
improve the accuracy of initial detection in an online scenario. For a visual-

Figure 5.3: Effects of learning on detection performance. Upper half: Saliency
map weights learned by CMA. Lower half: no learning, all weights have been
set to 0.5. When the saliency map threshold is set to 0.4, the number of false
positives can be reduced to 40% of its original value, whereas the number of
true positives stays above 95% of its original value.

ization of the effects of learning, please refer to fig. 5.2, where one can clearly
observe the suppression of stimuli which do not occur in target objects. On a
1.5 GHz Pentium II processor, about 5 frames per second could be processed
when using the saliency map. This is not sufficient for real-time applications on
present-day computers; it must be borne in mind, however, that the really time-
consuming part of the saliency map calculation is the repeated center-surround
filtering, which basically consists of repeated convolutions with large Gaussian
filter masks. This is a task than can easily be performed by specialized hard-
ware if it should be necessary. However, the presented saliency map model is
not primarily intended for real-time applications, as shall be discussed in the
next section.

67

0

20

40

60

80

100

120

0.
0

0.
1

0.
2

0.
3

0.
4

0.
6

1.
0

Saliency map threshold

M
is

se
d

 t
ar

g
et

s
d

et
ec

ti
o

n

Figure 5.4: Saliency of missed detections. Note that virtually all missed ROIs
are salient enough to be detected up to a threshold of 0.35.

5.9 Discussion

It has been demonstrated that it is possible to improve the results of initial de-
tection by a suitable trained and parametrized saliency map as was described in
this chapter. This, however, is just a first step, for the presented saliency map is
a very general model of selective visual attention and should be used to develop
more powerful and biologically motivated object detection algorithms (in con-
trast to those presented in chapter 3) rather than real-time applications. In order
to achieve this, several extensions to the model may be considered: first of all, it
should be investigated if appropriate object models (i.e., weight configurations)
can be learned online. Apart from being more biologically realistic, it would also
considerably simplify both implementation and application of the saliency map
model. Another point worth considering is the question whether a component
of space-based attention as found in psychophysical experiments [134] might not
be employed with beneficial effects. Essentially, the saliency map model would
then be able to enhance specific image locations instead of local features. This
could be implemented easily by coarsely subdividing the image into quadratic
non-overlapping parts, and giving each rectangular region its own set of weights.
Such a model would learn to enhance or suppress certain features depending on
their location within the image. The model is also suited to generate analo-
gies to scan-path trajectories: after convergence, the strongest local activation
within the map can be suppressed, and a subsequent center-surround step will
produce a new locally strongest activation. If this procedure is repeated several
times, the sequence of locations corresponding to locally strongest activations
can be used for further recognition mechanisms; either, a classifier is applied at
each point, or the geometrical structure of the sequence itself might be exploited
(see [108] for more details about this concept). Further research opportunities
using the presented saliency map model are suggested in chapter 8.

68

5.10 Technical details

The intrinsic sizes of the map are set in a way that allows the detection of
objects (in this publication: cars) at all sizes in which they occur. Therefore,
is = {25, 50, 100} was chosen, which reflects the fact that cars come in sizes
roughly between 20 and 100 pixels in diameter.

For efficiency reasons, only separable convolution filters (see chapter 1) are
used throughout the implementation of the proposed model. Whenever a con-
volution is mentioned, it should be understood that this refers to two con-
volutions with each of the two one-dimensional filters which correspond to a
two-dimensional separable filter mask.

5.10.1 Downsampling filters

Filtered images at all pyramid levels (ranging from 360x288 pixels to 90x72
pixels) which are produced in each modality are repeatedly downsampled by a
factor of 2 to a fixed size of 45x36 pixels using a binomial smoothing filter (see
chapter 1) of order 4 before each downsampling step. The filter mask is given
by 1

16 (1 4 6 4 1).

5.10.2 Center-surround filters

Basic components of difference-of-Gaussian (doG) filtering are two Gaussian
filters at pyramid level s: an ”on”-filter with standard deviation σs

on and an
”off”-filter with standard deviation σs

off = 2σs
on. σs

on is chosen to be equal to
half of the level’s intrinsic size is (divided by the same factor that was used for
downscaling) because is measures a diameter whereas σs

on measures a radius.
A filter cut-off (see chapter 1) is applied at 2is pixels away from the zero point
both for ”on”- and ”off”-filters. Zero-padding boundary conditions are applied
whenever a filter exceeds a feature map’s dimensions.

5.10.3 Steerable filters

Steerable filters of size 11 are used as described in [32]. Steerable filter are sep-
arable orientation-selective filters that (under certain conditions) approximate
the orientation-selective Gabor filters described in chapter 1. The three basis
functions G2a, G2b, G2c are sampled at an interval of 1 pixel. The resulting filter
masks are used as convolution filters with mirror boundary conditions whenever
they exceed the source’s dimensions. The three resulting filtered images at each
pyramid level are then subjected to a pixel-wise conversion to absolute values,
making strong negative responses count just as their positive counterparts.

5.10.4 Gradient filters

Two one-dimensional gradient filters of size 17 are applied in the x- and the y-
direction using periodic boundary conditions (see chapter 1). From the results

69

at pyramid level s, the gradient energy Gs(x, y) is computed as described in
chapter 1. For efficiency reasons, it is chosen not to perform the square root
operation of eqn. (1.14). Together with subsequent normalization, this amounts
to a nonlinear amplification of high energy values.

70

Chapter 6

Object detection and
feature base learning with
sparse convolutional neural
networks1

6.1 Summary

In this chapter, a different approach than in chaper 4 is pursued: the steps
of feature extraction and initial detection can be performed by a new con-
volutional neural network model termed sparse convolutional neural network
(SCNN). The model’s suitability for real-time object detection in gray-valued,
monocular video sequences is demonstrated. SCNNs are trained on ”raw” gray
values and are intended to perform feature selection as a part of training the
neural network classifier. For this purpose, the learning rule is extended by
an unsupervised component which performs a local nonlinear principal compo-
nents analysis: in this way, meaningful and diverse properties can be computed
from local image patches. The SCNN model can be used to train classifiers
for different object classes which share a common first layer, i.e., a common
preprocessing. This is of advantage since the preprocessing needs only to be
calculated once for all classifiers. It is further demonstrated how SCNNs can be
implemented by successive convolutions of the input image: scanning an image
for objects at all possible locations is shown to be possible in real-time using
this technique. Using this method, object detection can work without the initial
detection step of chapter 4 while retaining real-time capability. It is shown that
classification results are competitive to those presented in chapter 4.

1Some of the content of this chapter has been published in A. Gepperth. Visual object
classification by sparse convolutional networks. In Proceedings of the European Symposium
on Artificial Neural Networks (ESANN) 2006. d-side publications, 2006. accepted.

71

6.2 Introduction

In many real-world classification tasks there is a need for classifiers that can
learn from examples, such as neural networks (NNs) or support vector ma-
chines. Typically, the performance of such classifiers depends strongly on a
suitable preprocessing of the input, but it is far from clear what characterizes
an optimal preprocessing or if there even exists an optimal solution. Sometimes
it is required that preprocessing should reduce the dimensionality of the input
as far as possible, whereas another objective is to make preprocessing invariant
to certain transformations of the input (typically translation, rotation and scal-
ing are investigated in this context). The process of choosing an appropriate
preprocessing transform is referred to as feature selection. In addition to con-
straints on error rates, the available processing time is usually bounded from
above, too, especially in computer vision. Therefore, not only the accuracy of
classifiers is important but also their execution speed.

Convolutional neural networks (CNNs) [83] were proposed to address all of
these issues. They are specialized instances of multilayer perceptrons (MLPs)
and thus essentially feed-forward NNs. Due to their connectivity, CNNs can be
implemented by successive convolutions of an input image, permitting very high
execution speed (see [37,118] for recent applications of CNNs). CNNs operating
on unprocessed image data essentially learn a preprocessing transform, thus
integrating feature selection into the training process.

In this chapter, a new convolutional neural network architecture termed
sparse convolutional neural network (SCNN) is presented and its possibilities
for object detection are explored. Since convolutional neural networks can be
implemented using consecutive convolutions, whole-image search at multiple
scales is possible in real-time on standard present-day computer hardware. Fur-
thermore, the SCNN model is intended to perform feature selection from un-
processed image data: a hybrid supervised-unsupervised learning algorithm is
described which computes meaningful and diverse features by the interplay of
local nonlinear PCA and error minimization. Lastly, an algorithm for learning a
common image representation that is shared by several SCNN object classifiers
is described. The obvious advantage (especially when performing whole-image
searches) of different classifiers using the same preprocessing is that preprocess-
ing needs only to be performed once per image.

6.3 Classification problems

Most experiments described here are based on the problem of car classification
in real-world video traffic scenes (see, e.g., [40]). For a few experiments, the
problem of traffic sign classification is considered in addition. However, this
problem is not a present focus of investigations, therefore training data are much
less rigorously selected and tested, and results may not be very generalizable.

Object classifiers are trained to distinguish objects from background. Train-
ing data are generated manually by marking rectangular regions of interest

72

Figure 6.1: Positive and negative examples for the car/traffic sign object classes.

(ROIs) within a single video image that contain objects. The rectangles enclose
an object as tightly as possible. Negative examples are also created manually,
although that choice is very ambiguous. It was attempted to collect negative
examples that are as similar to objects as possible. Some representative train-
ing examples for cars and traffic signs are shown in fig. 6.1. The requirement
that the classification be invariant to certain transformations is encoded into
the training examples. Let us define some notation: a training example consists
of a class label and a region of interest (ROI) within a specified image. The ROI
either does or does not enclose an object: to indicate this, the class label is set
to 1 for an object and to -1 otherwise. A training dataset D contains N exam-
ples. Before using a dataset for training, a defined number of transformations
is applied to the ROI of each example, creating the transform dataset Dtr.

First of all, the transformations to be applied must be specified as well as the
degree of invariance which the classification should have with respect to these
transformations. Let us assume that each transformation fα

t , t ∈ [0, . . . , T − 1] :
D
→ Dtr can be continuously parametrized by a single parameter α, and that
a total of T different transformations exists. Let fα=0

t denote the identity
transform. Then a limit αmax

t > 0 must be specified, stating the range of
parameters It = [−αmax

t . . . αmax
t] in which classification invariance should hold.

Further assuming that all transforms commute (fulfilled for translation, rotation
and scaling in two dimensions), we obtain a map

τ : D
→ Dtr; r
→ (fα1
1 ◦ · · · ◦ fαT

T)(r), αk ∈ Ik, r ∈ D .

that is applied a defined number of times to each example in D. From the results,
the transform dataset is created: it is therefore larger than the original dataset of
examples. In the implementation presented here, a certain invariance to scaling
and translation is required. Translation is modeled by two transformations, one
for horizontal and one for vertical translations. The parameters αx and αy of
both transformations are interpreted as the percentage of an ROI’s width or
height by which it should be shifted. The single scaling transform enlarges or
reduces an ROI’s width and height by a factor of αsc while ensuring that the
center of the ROI stays constant. In addition, it is required for the map τ that
each transformation result must completely contain the original example.

Dtr is generated from labeled data by applying τ 9 times per example and
uniformly drawing from the parameter intervals Ix,y, Isc defined by αmax

sc =√
2,αmax

x,y = 10. From the transform dataset, three disjunct datasets Dtrain,
Dval and Dtest are created which contain 2000 examples each, half of them
positive. The image content within the ROIs is up- or downsampled to a fixed
size of 25x25 pixels. Whenever necessary, appropriate smoothing and bicubic
interpolation are performed. For later experiments, three additional car datasets

73

are created from Dtr where each ROI is shifted by 50% of its width to the left.
The idea behind this classification task is to make detection more robust by
checking if the ”left-shifted” object classifier indeed finds half a car at the left
of a detected car.

6.4 Sparse convolutional neural network classi-
fiers

Like the original proposal [83] they are derived from, SCNNs are feed-forward
neural networks with local receptive fields (see fig. 6.2). However, the connec-
tion structure in SCNNs has been considerably modified as compared to [83].
The proposed model is simpler and can —once trained— be tested using ex-
isting software for simulating multilayer perceptrons. Furthermore, the issue of
obtaining meaningful and diverse features is addressed using a direct approach.
The original CNN model attempts to achieve this by connecting hidden layers
only to certain (not all) succeeding layers, which has been experimentally shown
to lead to dissimilar feature maps. It is unknown, though, what effect the global
network structure has on this mechanism and how many experimental trials are
necessary for this mechanism to work. In the SCNN model (see fig. 6.2), feature
complexity and diversity are enforced by additional unsupervised terms in the
learning algorithm. They cause outputs of different feature maps at the same
image location to be (nonlinearly) decorrelated and to have extremal variance
in a way very similar to nonlinear principal components analysis [56]. Employed
principles are gradient-based variance maximization of neuron outputs, decor-
relation and weight vector normalization. The SCNN model has an input layer
of fixed dimension, one or more hidden layers, and an output layer containing
a single element. Each layer receives input from one other layer (the preceding
one) and projects to a single layer (the succeeding one, see also fig. 6.2).

6.4.1 Network model

Since SCNNs are specialized instances of multilayer perceptrons, the network
structure is discussed without reference to the implementation as successive
convolutions. Only at the end of this section, some constraints arising from this
implementation are discussed.

Connectivity

A layer l having dimensions Lx
l ×Ly

l is composed of identical cells of neurons of
dimension Cx

l × Cy
l . Thus, a neuron can be assigned coordinates n = (l, c, i),

where c denotes the two-dimensional index of the cell within layer l, and i the
neuron’s coordinate within its cell. Within one cell, each neuron is connected to
the same rectangular patch of neurons in layer l− 1 which is termed a neuron’s
receptive field (RF). Receptive fields in layer l − 1 can overlap in x- and y-
direction by Ox

l−1 × Oy
l−1. The set of all weights connecting a neuron to its RF

74

Image data

… …

… …

∆x
0

… …

… …

Shift
by ∆x

0

∆x
1

Figure 6.2: Left: Sketch of the SCNN network model (cross-section, y-dimension
is not shown). Receptive fields are drawn in by dotted ellipses, cells are indicated
by the alternation of darker and brighter backgrounds. Input filters connecting
neurons to their receptive fields are shown as arrows in different shades of gray
which match the shade of the destination neuron they project to in the next
layer. Arrows of the same shade of gray represent equivalent input filters, see
text for details. In addition, the step size ∆x

0 is shown: it is the number of input
neurons (i.e., pixels) by which the classifier samples the input image in the x-
direction when performing whole-image searches. Note the local connectivity
of SCNNs: each neuron receives input only from a part of the neurons of the
preceding layer. Right: Details on whole-image search with SCNNs (y dimension
is not shown). The diagram shows how the classifier (represented by rectangles)
can be applied at shifted positions of a whole image. When the classifier is
shifted in the input layer by ∆x

0 , it simply moves on by one cell in the layer 1
(and all subsequent layers), too. From this, it is clear that the corresponding
step size ∆x

1 must be a multiple of layer 1 cell sizes, or the shiftability property
is lost. Equivalent conditions must be fulfilled in all subsequent layers, too,
by the same reasoning. Assuming that the whole image has been processed by
successive filtering and recombination, the classifier can be shifted in steps of
∆x

0 over the whole image without the need for additional calculations.

is denoted input filter. Since it is in one-to-one correspondence to a RF, it can
naturally be arranged in a rectangular scheme with dimensionality Ix

l−1 × Iy
l−1

which is identical to that of the RF. Connection strengths are denoted by wn′n
where n specifies the coordinates of the destination neuron and n′ those of the
source neuron. Please refer to fig. 6.2 for a visualization. Each neuron (except
for those in the input layer) is connected by a trainable weight to a bias neuron
whose activation is constant (here: 1.0).

Constraints

The first set of constraints comes from the geometrical consistency of the SCNN.
Trivially, given a layer l, Lx

l , Ly
l must be integer multiples of Cx

l , Cy
l . Further-

more, the number of input filters in layer l− 1 must be identical to the number

75

of cells in layer l. Thus, we get two conditions

Lx,y
l = kCx,y

l , k ∈ N+ (6.1)

Lx,y
l

Cx,y
l

=
Lx,y

l−1 − Ix,y
l−1

Ix,y
l−1 − Ox,y

l−1

. (6.2)

A weight-sharing constraint enters via the requirement that neurons within a
layer l, having the same within-cell coordinates i but being connected to different
RFs, must have identical input filters. It is this constraint which allows to
implement a network run by a series of convolutions. In contrast, each neuron in
one cell is allowed to be connected to the common RF by different filters than the
other neurons in that cell. Effectively, the size of one cell, Cx

l ×Cy
l , specifies the

number of convolution filters necessary for the simulation of each layer, whereas
the size of receptive fields (equal to input filter size Ix

l−1 × Iy
l−1) determines

the dimensions of the convolution filters. For each layer l, sets of weights that
are required to have the same value by the weight-sharing property are called
equivalent. Obviously it is desirable to obtain a trained SCNN which requires as
few convolution filters as possible while maintaining high classification accuracy.

A further constraint comes from the implementation that is used for whole-
image search (see section 6.5) although it is not necessary for the simulation of
the SCNN model per se: it requires that step sizes ∆x

l , ∆y
l in layer l (i.e., the

differences between the size of input filters projecting to layer l + 1 and their
overlap) must be integer multiples of that layer’s cell sizes. Fig. 6.2 illustrates
this particular constraint. In precise terms:

∆x,y
l ≡ Ix,y

l − Ox,y
l = kCx,y

l , k ∈ N . (6.3)

Activation functions

The activity An of a neuron is calculated from the activities of its RF and the
weight values in its input filter as An = σ(

∑
n′∈RF An′wnn′) using the sigmoidal

activation function σ(x) = x
1+|x| .

6.4.2 Learning in SCNNs

Initially, all weights are initialized to small random values between -0.01 and
0.01 (see [103] for a motivation of this initialization). Then, a weight-sharing
step is performed: for each layer l, the average of each set of equivalent weights
is computed. Subsequently, all equivalent weights within layer l are set to
their previously computed average value. In this way, all equivalent weights
have identical values at the start of training. During each learning step or
epoch, all weights of the SCNN are treated as if they were independent. An
improved variant of the well-known Rprop learning algorithm (IRprop+, see
[58]) is applied to the SCNN using dataset Dtrain for 80 epochs. After each
epoch, the weight-sharing condition is enforced as described before. Note that
weight-sharing is enforced separately for the bias weights of each layer.

76

Figure 6.3: Input filters in the input layer of a trained SCNN. The images
show input filters of identical SCNNs trained with different learning rules: MSE
gradient (left) and hybrid learning rule described in the text (right). Note that
many filters in the left images are almost identical whereas in the right images,
such redundancy does not occur.

The mean squared error (MSE) is calculated as EMSE(D) = 1
|D|

∑|D|
p=0(A

out
p −

cp)2 using a dataset D. It uses the class label cp of pattern p and the activation
Aout

p of the CNN’s output neuron in response to pattern p. The learning rule for
each weight is composed of the usual MSE-minimizing term plus an additional
unsupervised term. The additional term is an approximation of Oja’s nonlinear
subspace rule [56]:

wnew
n′n = wn′n + γAn(An′ −

∑
j∈cell(n)

Ajwn′j) (6.4)

where γ is a small positive constant and the sum on the right-hand side of the
equation runs over all neurons in the same cell as n. Please see chapter 2 for
goals and background of this and other PCA learning rules.2

During training, model selection is performed using EMSE(Dval) alone. When
evaluating the performance of a trained network, the classification error CE(Dtest)
is used. It is defined as CE(D) = 1− 1

|D|
∑|D|

p=0 θ(Aout
p − τ), where θ denotes the

step function and τ a threshold assigned to each NN (always taken to be 0).
A few comments on the chosen learning algorithm are in order: a local non-

linear principal components analysis (please see chapter 2 for a comprehensive
introduction) is performed within each receptive field, but modified by the MSE
gradient. The unsupervised part of the learning rule selects those weight vec-
tors which capture the largest possible part of their input’s variance. It also
leads to orthonormal input filters with an euclidean norm of 1.0. The learning
algorithm is an extension of the algorithm given in [39] where only orthonormal-
ization was performed (not by gradient descent but operating directly on the
weights). Due to unsupervised learning, neurons within a cell capture a part of
the variance of their input that is maximally large. Furthermore, the neurons’
outputs are decorrelated which leads to the formation of dissimilar input filters
(see fig. 6.3).
For weights connecting to the output neuron, the unsupervised term in the
learning rule is not considered because it interferes too much with correct clas-
sification, i.e., the MSE-minimizing term.

2With the substitutions An → σ(Wx), An′ → x and by writing out the matrix eqn. (2.11)
in component notation, it is easy to see that eqns. (6.4) and (2.11) are equivalent.

77

…

…
.…

layer 0 layer 1 layer L-1

Feature maps
of layer 0

Feature maps
of layer 1

Classification
layer

convolution

recom
bination

convolution convolution

recom
bination

Convolution filt-
ers applied at in-
tervals of ∆x

0

Figure 6.4: Sketch of the architecture to implement whole-image searches with
the SCNN model. The input layer of the SCNN now consists of the whole image,
and successive layers are correspondingly enlarged. Input filters of the SCNN
translate into convolution filters: convolution results of a layer with its input
filters are called feature maps. The recombination of feature maps into the next
layer mirrors the connectivity of the SCNN model. Identical shades of gray of
hidden layer neurons and feature maps indicate this. Instead of converging to
a single output neuron, the SCNN now converges to a classification layer where
each neuron (or pixel) represents the output of the SCNN classifier applied at
certain image location. Note that symbols and shades of gray have been chosen
in accordance with fig. 6.2 in order to convey the one-to-one relationship.

6.5 A convolutional architecture for whole-image
search

The neural network architecture described in the previous sections is particu-
larly suited, due to the weight-sharing constraint, for fast implementation by
means of convolution filters (see, e.g., [69] for an introduction). However, it is
possible to achieve far greater speed gains when considering whole-image search,
i.e., the application of a fixed-size classifier at every conceivable position within
an image, possibly at several scales. In this context, CNN architectures like the
SCNN model have the tremendous advantage that convolutions for overlapping
classifiers need only be computed once. This can be understood by considering
that input filters in the SCNN do not depend on their spatial position within a
layer due to weight-sharing. By inference, the whole image needs to be convolved
only once with all input filters in order to produce a classification result at each
position within an image. Please see fig. 6.4 for details of the convolutional ar-
chitecture and fig. 6.2 for details on whole-image search with this architecture.
Furthermore, since the input image is usually subsampled by the input filters of

78

the first network layer (always the case when ∆x
0 ≥ 2, see fig. 6.2), only the con-

volutions with these input filters contribute significantly to the total processing
time. The whole-image classification problem then reduces to filtering with a
limited number of (usually non-separable) filters; if real-time performance is de-
sired, the mask size should be small (typically, sizes of 5, 7 or 9 are chosen). As
was already mentioned, the SCNN model presented here belongs to the class of
convolutional neural networks which were originally proposed in [83]. A crucial
difference is that no implicit subsampling of feature maps is performed, whereas
in [83], feature maps are successively filtered and subsampled until they con-
verge onto one neuron, the output of which is combined with similar neurons
to form a classification output. In the SCNN model, subsampling is performed
if the step sizes in one layer are chosen larger than 1, but the choice of sub-
sampling filters is not defined a priori (i.e., Gaussian smoothing) but learned
by the network, too. It should be stressed here that subsampling is possible in
the SCNN model, but at this point it seems more practical to let the SCNN
learn the downsampling filters as well. A second difference is that feature maps
are recombined into layers in the SCNN model after each convolution, whereas
in [83], feature map outputs are recombined only in the last layer of the net-
work. Recombination after each convolution inflicts a small computational cost,
but it can be expected that it results in more reliable detection of conjunction
features similar to the object detection architectures of [105,128]. Lastly, there
exists a direct mechanism of enforcing diversity among the learned features of
the SCNN, which guarantees without the need for additional experiments that
informative and non-redundant features are learned which, in addition, capture
a significant part of the input’s local variance (by the local PCA property).

6.6 Feature base learning

An interesting application is motivated by the observation made in the previous
section that the computational load is biggest during the simulation of the first
layer. If two networks had identical processing in that layer, they could be used
simultaneously for whole-image search while the convolutions of the input image
would only need to be computed once. Stated in different terms, it would be
interesting to find out if there is a common feature base for two or more object
classes, i.e., a preprocessing of the input which is suited for representing all of
the object classes under consideration. This is inspired by the fact that cortical
area V1 in the visual cortex of mammals performs a limited number of very
basic preprocessing steps (see, e.g. [28]). Therefore, it is investigated if and how
a common feature base for N object classes can be learned only from available
examples. It is tested by experiment whether it is possible to achieve classifi-
cation rates comparable to those attained when training classifiers separately.
In the formalism of SCNNs, there exists a straightforward approach: Basically,
N networks are trained independently from each other using methods given in
section 6.4.2, but after each iteration of the learning algorithm, a weight-sharing

79

Figure 6.5: Exemplary SCNN architecture for feature base learning. The hori-
zontal line indicates that the processing streams that converge onto the two (or
more) output neurons do not have any connections in common.

constraint is enforced between the filters in the input layers of all networks.3

An alternative interpretation is a single network which converges onto N output
neurons by noninterfering processing streams from a common first hidden layer.
Please see fig. 6.5 for a visualization. Model selection is performed using the
sum

∑N
i=0 Ei

MSE(Di
val) of the mean squared errors of each individual classifier

on its validation dataset Di
val.

6.7 Experiments

Two types of experiments are conducted: the speed of the system is tested using
selected SCNN topologies, and assessments of topology-dependent classification
performance are conducted. The latter task is performed off-line using training
data mainly from the car classification task (see fig. 6.1).

6.7.1 Off-line classification performance of single SCNNs

Due to the weight-sharing constraint (see section 6.4.2), the number of free pa-
rameters in an SCNN is greatly reduced. The choice of an appropriate topology
is therefore crucial since the number of free parameters in the network depends
directly on it. Since the correct choice of NN topology for a given classification
task is still, in general, an unsolved problem, a number of experiments was con-
ducted to identify suitable topologies. The search space can be reduced by the
requirement that small input filters should be used in the input layer, as well as
by the architectural constraints (6.1), (6.2) and (6.3) which SCNNs must obey.

In each experiment, a certain SCNN topology is trained 6 times using a
different random seed each time, and the best classification result CE(Dtest)
is taken to be a measure of that topology’s learning capacity. As a baseline

3Note that the dimensions of the input layers need not be identical, only the dimensions
of the input filters in the input layer.

80

Table 6.1: Best classification errors of various SCNN topologies for cars (C),
cars shifted left (L) and traffic signs (TS) (errors are given in percent). Cells
and layers are quadratic so only one dimension of their sizes is given (in columns
”layers” and ”filters”). In row 0, the result for two fully connected reference
networks of MLP type is given. SCNNs 1-5 demonstrate the effects of varying
input filter sizes and numbers. Notable is the improvement when allowing 4x4
input filters as in SCNN 5. The last two rows give the results for the feature
base learning (using topology 4, see text) of two and three object classes.

Nr. layers filters nr.filters conn. free param. minexpCE(Dtest)
0 25-5-1 (25) - 15650 15650 5.5 (C), 5.4 (L), 6.7(TS)
1 25-9-1 21-9-x 3-1-x 36162 4050 6.8
2 25-18-1 9-18-x 2-1-x 26568 648 7.8
3 25-30-1 7-30-x 3-1-x 45000 1341 6.7
4 25-22-1 5-22-x 2-1-x 12584 584 6.8(C),5.8(L),11.4(TS)
5 25-44-1 5-44-x 4-1-x 50336 2336 6.3
6 feature base learning using SCNN 4 7.3(C),5.9 (L), 10.9 (TS)
7 feature base learning using SCNN 4 6.5(C),11.0 (TS)

for SCNN performance, a fully connected NN with one hidden layer is trained
on the car classification problem in the same way. Table 6.1 gives an overview
over representative SCNN topologies as well as the fully connected reference
networks. When considering SCNNs with one hidden layer, two ways to improve
classification results were identified: increasing the size, or alternatively the
number of input filters in the input layer. Obviously, both operations lead to
a larger number of free parameters. The best topology found in this way has
filter sizes of 5x5 pixels in the input layer, yet it is not quite compatible with
real-time requirements since it requires 16 convolutions of the input image in
the input layer alone. It uses 80000 connections, although the actual number
of free parameters is 23844. It is notable that the classification performance is
only slightly worse than that of the reference network despite the fact that the
number of free parameters is much lower.5 If real-time capability is desired,
SCNN 4 is the topology to choose. Although using a much smaller number of
connections and free parameters than topology 5, it achieves only slightly worse
classification performance. Please see section 6.7.3 for speed measurements.

For unknown reasons, the inclusion of more hidden layers did not improve
performance. Many-layered topologies were constructed by adding new layers
onto well-performing SCNNs with one hidden layer. Notable was much slower
overall learning convergence. It is therefore conceivable that training was not
conducted sufficiently long. More research will have to be applied in order to
shed light on this particular point.

4Note that it is the number of free parameters which determines the speed of whole-image
classification

5It was also shown that SCNN performance is slightly superior to that of an MLP with
identical connectivity as well as an SCNN using supervised learning only.

81

6.7.2 Feature base learning results

SCNN topology 4 given in table 6.1 is used for learning a common feature base
for cars and traffic signs. It is not the best-performing topology that was found
but comes very close to it; what is more, it allows real-time operation. Training
is performed using the algorithm given in section 6.6. Results are given in
table 6.1. It is evident that classification results are comparable to those of
classifiers trained separately on their respective tasks. Observe that the feature
base result for traffic signs has to be compared to traffic sign results of topology
4 in table 6.1, not to the reference network performance: the goal was to show
that the performance of the individual classifiers can be reproduced by feature
base learning. When choosing SCNN topologies with larger input filters, the
performance of the reference network can be approached for traffic signs, too.

6.7.3 Online performance

All tests were conducted using a 1.86Mhz Centrino processor. Images had a
size of 360x288 pixels; convolutions were implemented in C++, and no use was
made of the capabilities of the graphics hardware. Classification was performed
at three spatial scales for each frame, where each scaled image was obtained by
smoothing with a size-5 binomial filter and downsampling by a factor of 2. The
best-performing SCNN topology 5 given in table 6.1 allows a frame rate of 7
frames per second (fps), whereas SCNN 4 allows 22 fps at the price of slightly
inferior classification performance. When using three classifiers of topology 4
sharing a common preprocessing, a speed of 19 fps is attainable.

6.7.4 Learned –vs– designed visual features

The SOE feature extraction algorithm presented in chapter 4 has been designed
”by hand” to represent the object class of cars optimally. It is therefore inter-
esting how the classification accuracies achieved by the SCNN model compare
to the object classifier presented in chapter 4. It uses the SOE algorithm to
compute a feature set which is then classified by a fully-connected MLP with
one hidden layer of 20 neurons.

The classification error of approximately 3 % reported in chapter 4 is not
directly comparable to the errors listed in table 6.1 because in chapter 4, no
transformations (see section 6.3) are applied to the training examples prior to
generating the training databases. This is omitted because an initial object
detection system is assumed to be available which localizes cars with good ac-
curacy before the classifier is applied. Furthermore, invariance to scaling and
translation is encoded in the SOE algorithm. For both reasons, it is not neces-
sary to take the requirement of invariance to translation and scaling into account
when generating the training databases.

The classification error on Dtest turns out to be 4.8% when training databases
are generated according to section 6.3 (using the SOE method for feature ex-
traction), and the classifier described above is trained using these databases.

82

This shows clearly that feature design does have its merits; on the other hand,
one can argue that the results are obtained using a much higher number of
free parameters (about 5000) than in the best SCNN of table 6.1, and that the
difference is small.

Indeed, in chapter 7 it will be shown that the NNs from chapter 4 can be
optimized to a size of about 2000 connections without losing classification accu-
racy. This result seems to suggest that the number of necessary connections in
the NN is roughly equal to the number of free parameters of the best-performing
SCNN. This is not the case, since the NN optimization is performed using the
same training data as used in chapter 4. It can be safely conjectured that the
number of necessary connections grows when performing classification on the
much more difficult databases used in this chapter.

6.8 Discussion

The new convolutional network model is interesting in several respects: on the
one hand, it demonstrates a successful combination of supervised and unsuper-
vised learning rules; on the other hand, it offers very interesting possibilities for
practical applications. Due to its real-time capability and the ability to search
images simultaneously for several object classes using a trainable common pre-
processing, it is suited for applications where scene analysis is performed, which
consists usually of the recognition of more than one type of object. The driving
idea behind the SCNN model was to reduce the need for ”manual” feature de-
sign, and it could be shown that, although the results of manual feature design
could not be surpassed, they were at least roughly equaled.

With SCNNs, some prior knowledge must still be provided in the form of
the network topology: if it is known that, for example, that features of a certain
size are characteristic of an object class, the input filters should be chosen
accordingly. In many cases, input filter and step sizes are constrained by real-
time requirements; once input filter and step sizes are fixed, the SCNN topology
constraints are sufficient for removing most of the remaining ambiguities. As
with all NNs, the correct choice of topology is an unsolved problem, although in
practice one can simply take the SCNN with the largest number of parameters
that is compatible with the constraints of the relevant application. As has
been demonstrated, increasing the number of free parameters tends to improve
classification performance (at least for SCNNs with one hidden layer).

The issue of extending SCNN topology successfully to more than one hidden
layer is a current research topic; above all, it is important to know how topologies
must be chosen such that filters in the hidden layers can be small (if speed is
an issue). SCNNs with two or more hidden layers may be much more powerful
in capturing local combination features; furthermore, it is intuitive that feature
base learning can profit greatly from such topologies. The SCNN model itself
could also be extended; in particular, shortcut connections which bypass one or
more layers, and subsampling layers (as in LeCun’s original proposal) suggest
themselves here. From a theoretical point of view, a detailed examination of the

83

interplay between the supervised and unsupervised terms in the learning rule
would be interesting; the relation of learned SCNN input filters to independent
components seems to be worth investigating. Last but not least, it is intended
to use SCNN classifiers (possibly in conjunction with other modules) to build
robust and fast object detection systems that reliably work in practice.

84

Chapter 7

Structure optimization of
object classifiers1

7.1 Summary

This chapter aims to optimize a different aspect of object detection, namely
the connection structure of neural network classifiers which are used for the
confirmation of initial object hypotheses. The issue of feature design is not
touched here, and the structure of neural networks is optimized using a fixed
preprocessing. For the purpose of finding suitable network structures, multi-
objective evolutionary optimization of neural networks is applied to two real
world problems, car and face classification. The possibly conflicting require-
ments on the NNs are speed and classification accuracy, both of which can
enhance the embedding systems as a whole. The results are compared to the
outcome of a greedy optimization heuristic (magnitude-based pruning) coupled
with a multi-objective performance evaluation. For the car classification prob-
lem, magnitude-based pruning yields competitive results, whereas for the more
difficult face classification, it is found that the evolutionary approach to NN
design is clearly preferable

1Some of the content of this chapter has been published in: A. Gepperth and S. Roth.
Applications of multi-objective structure optimization. Neurocomputing, (69):701–713, 2006.
Design and implementation of the evolutionary multi-objective optimization algorithm and
the implementation of multi-objective performance measures was done by S.Roth.

85

7.2 Introduction

The work presented here deals with the optimization of feed-forward neural
network (NN) classifiers that support real world object detection tasks. The
attribute “real world” is intended to emphasize that these are not toy problems
but systems that are presently being used in commercial products, or will be in
the near future. Here, error tolerances are usually quite restrictive. When con-
sidering existing applications of real world object detection systems it is obvious
that imperfect object detection can lead to serious (possibly fatal, e.g., in au-
tomotive applications) problems, thus imposing a tight constraint on tolerable
errors rates. To make matters even more difficult, detection should not only be
near-perfect but also capable of real-time operation, placing strong bounds on
the complexity of the methods that are used. It is intuitively clear that these
constraints will not always coexist peacefully, and that methods must be devel-
oped to design and optimize systems in the presence of conflicting objectives.

Real world object detection

Many commercial object detection tasks for which solutions meeting the above-
mentioned constraints (low classification error in real-time operation) have been
proposed fall into the domain of advanced driver assistance systems. These
systems typically require the detection of pedestrians [99, 114, 122], vehicles
[31,40,112], lane borders [24], and traffic signs [2] to ensure the “intelligent vehi-
cles” can construct an adequately complete representation of their surroundings
and (possibly) take the appropriate actions. Other domains, requiring success-
ful face recognition in particular, can be found in commercial applications such
as content-based image retrieval, video coding, video conferencing, automatic
video surveillance of a crowd, intelligent human-computer interfaces, and iden-
tity authentication. Face detection is the inevitable first step in face recognition,
aiming at localizing and extracting the regions of a video stream which contain
a view of a human face. Overviews of examples, problems and approaches in
the research domain of face detection can be found in [52, 139].

Thus, the problems of detecting cars and human faces are important exam-
ples of current research in visual object detection. Usually, architectures are
broadly motivated by biological visual search methods [14, 137]: a fast initial
detection stage localizes likely target object locations by examining easily com-
putable visual features, whereas a more detailed analysis is then performed on
all candidate regions or object hypotheses that have been formed in the initial
detection stage. This chapter is concerned with the classification of hypotheses,
that is, the decision whether a given object hypothesis actually corresponds to a
relevant object type. Based on previous investigations (see chapter 4 and [132]),
the problems of car and face detection are discussed in-depth.

86

Neural classifiers

The task of optimizing the weights and the structure of the NNs used for face
and car classification in the ViisageFaceFINDER� system [120] and the car
detection system described in [40] is addressed. In both cases, one goal is to
increase the speed of the neural classifier, because faster classification allows for a
more thorough scanning of the image, possibly leading to improved recognition.
Another goal is of course to enhance the accuracy of the NN classifiers. It
cannot be expected that these two requirements can be achieved independently
and simultaneously.

Feed-forward neural networks have proven to be powerful tools in pattern
recognition [141]. Especially in the domain of visual object detection the com-
petitiveness of NNs is widely accepted. The advantage of neural networks is
the possibility of learning the mapping from object examples to their class la-
bels solely in a data driven way. However, to get exceptional performance, the
network architecture has to be extensively tuned (number of layers, number of
nodes, ...) [139]. This drawback is addressed by variants of a hybrid optimization
algorithm presented in this chapter.

Other classification methods might be used instead of NNs: methods of simi-
lar complexity such as, e.g., support vector machines (SVM) or simple methods
like linear classifiers, just to name a few. In this way, one could argue that
classifier optimization is unnecessary. For the case of SVMs, preliminary inves-
tigations on car classification with different standard kernels (linear, polynomial,
Gaussian) did indeed result in performance comparable to that of unoptimized
NNs. In order to obtain better results, it seems that an optimization of SVM
and kernel parameters must be performed, while an even better strategy would
be to use kernels specialized to the problem classes at hand. Although it is
a strong point of SVM classifiers that they allow this possibility, the design
of a kernel is not always straightforward, and above all must be done manu-
ally. In contrast, the hybrid NN optimization method proposed here is largely
automatic. What is more, the new kernels would presumably contain further
parameters which in turn would need to be optimized.

NNs can be reduced to linear classifiers, either by choosing linear activation
functions for the neurons or by removing all hidden layers and connecting the
input layer directly to the output. Using the first method, the performance of
linear classifiers was shown to be significantly inferior to NNs when applied to
car classification.

While these investigations do not show that NNs are the best method to
solve the problems at hand, they certainly suggest that NNs perform in a highly
competitive way. It therefore seems justified to spend time trying to optimize
them still further.

Evolutionary multi-objective optimization

Given the general problem of conflicting objectives in visual object detection
and elsewhere, ways must be devised to address and resolve it. Multi-objective

87

optimization (MOO) considers vector-valued objective functions, where each
component corresponds to one objective (e.g., speed and accuracy of a neural
classifier). Such methods are capable of finding sets of trade-off solutions that
give an overview of the space of possible solutions [15, 19]. A property of the
found sets is that none of their elements can be said to be ”better” or ”worse”
than another: they are ”incomparable” (see later sections for a more rigorous
discussion). Ideally, each incomparable solution realizes the optimum for one
particular trade-off between objectives; from such sets one can select an ap-
propriate compromise, which might not have been found by a single-objective
approach.

There are recent studies that investigate domains of application and per-
formance of evolutionary MOO applied to NN design [1, 29, 38, 45, 60, 70]. For
example, Gonzalez et al. [45] evaluate the performance of different variation op-
erators in an MOO setting for the optimization of radial basis function networks
on various artificial test functions. The authors consider the number of radial
basis functions for regularization and the approximation error of the network
(classification error) as objective values. Both of them have to be minimized.

Fieldsend and Singh [29] suggest an evolutionary MOO algorithm for the
structure optimization of four-hidden-layer NNs for stock data prediction. They
use task-specific objectives, the risk and the profit, for the structure optimization
of the neural regression model and compare their results to the results of a
single-objective optimization approach.

Abbass [1] applies a self-adaptive evolutionary MOO algorithm with embed-
ded gradient based weight optimization (a so called memetic or hybrid approach)
to one-hidden-layer NNs trained to solve popular classification problems. The
author suggests the number of hidden units (for regularization) and the approx-
imation error of the NNs (classification accuracy) as objectives of optimization.
However, a comparison to other structure optimization methods on the basis of
state-of-the-art multi-objective performance assessment is missing.

Garcia-Pedrajas et al. [38] suggest an evolutionary MOO algorithm in order
to tackle the credit assignment problem in cooperative coevolution of multi-
layered NN-modules (sub-parts of a NN). The authors use several different ob-
jectives and compare their results to a number of other approaches applied
to popular classification problems. An advanced multi-objective performance
evaluation is missing.

Jin et al. [70] compare different evolutionary MOO algorithms and objective
vectors applied to an artificial Ackley function in order to build ensembles of
NNs from the set of Pareto optimal solutions of a trial. The approximation
error of the network and different regularization terms constitute the objective
vectors for optimization of NNs with one hidden layer. The authors compare
the results graphically by a plot of the final results.

It is evident from these publications that the domain of evolutionary MOO of
NNs is under active research, and that a number of methods exist that give ex-
cellent results in NN structure optimization. The goal of this chapter is to show
that classification problems in visual object detection can profit significantly
from NNs optimized by MOO. This claim is backed by applying performance

88

evaluation methods for multi-objective algorithms to the results.

Outline

Two NN optimization methods are applied to two data sets from real world
classification problems. One method is an evolutionary MOO approach (see
e.g. [60]), referred to as method EVO. In order to assess the performance of
this method, the results are compared to those of the second, greedy optimiza-
tion method for NNs known as magnitude-based pruning [103]. This method,
referred to as PR, is evaluated in an MOO setting on an optimization prob-
lem for car classification which will be termed car task. The same comparison
is performed on an optimization problem for face classification (denoted face
task) [131, 132].

First, in section7.3 the object detection and classification problems are pre-
sented. It is explained how the training databases for classification are obtained
from unprocessed (“raw”) video data. Those databases are used without any fur-
ther reference to their origin for obtaining and improving classification functions
in a purely data-driven way. Then in section7.4, the MOO framework for struc-
ture optimization of NNs is described. Methods for comparing multi-objective
optimization outcomes and the experimental setup used to derive results are
given in sections 7.5 and7.6. The results are stated in section 7.7 and discussed
in section 7.8.

7.3 Optimization problems

In this section, the problems of face and car detection which give rise to the
structure optimization of NNs are discussed. Both problems were described
in previous publications [40, 131] and share similar system architectures: a fast
initial detection produces object hypotheses (so-called regions of interest, ROIs)
which are examined by a NN classifier, confirming or rejecting hypotheses. The
initial detection stage in both cases uses heuristics which are designed for the
fast detection of cars and faces. These heuristics are not learned; needless to
say that they are different for cars and faces. Common to all methods for
initial object detection is the requirement that the “false negative” rate (the
rate of disregarded true objects) be very close to zero, whereas a moderate “false
positive” rate is acceptable: it is the job of the classifier to eliminate remaining
false positives, if possible. This approach embodies the requirement of capturing
really all objects of a class; it is thus accepted that sometimes an object is
detected where there really isn’t one. However, usually (as shall be briefly
described later) there exist additional ways of eliminating false positives beyond
the scope of single-frame classification whereas there are no known methods of
easily doing the reverse, that is, locating objects which are missed by the initial
detection.

Input to the NN classifiers are ROIs produced by the initial detection step,
their output is a decision whether the presented ROIs contain relevant objects.

89

The decision is based purely on the image data that is contained in the ROIs;
therefore, the decision can be a function of pixel values within an ROI only. The
most straightforward approach would be to present a NN classifier with the raw
gray values (perhaps normalized between 0.0 and 1.0) of pixels within an ROI
for learning and online classification. However, for some problems it can be
profitable to perform certain transformations of the ROI data before presenting
them to a classifier. The rationale behind this is twofold: on the one hand,
the raw data could be transformed to a representation which is more robust to
image distortions or noise, and on the other hand, some representations might
facilitate classification more than others. This step is termed feature extraction,
and the results are termed feature sets.

The initial detection stage will not be discussed in this chapter; instead, the
classification of ROIs is emphasized. This binary classification, separating ob-
jects from non-objects, is achieved by estimating the true classification function
from databases of examples. The tasks of car and face classification are now
going to be described in more detail.

For both classification problems, four databases of labeled feature sets are
created, termed Dlearn, Dval, Dtest and Dext. Labeling means assigning a class
label to each feature set indicating whether it does or does not belong to the
“relevant object” class. For feature sets that are extracted online no class labels
are available, of course: it is the trained classifier which has to infer those. For
details about the databases please see table7.1. The reason for this partitioning
will become apparent when the learning algorithms embedded into optimization
are discussed in section 7.4.1, as well as the setup of experiments in section 7.6.

In the implementation used here, the speed of a NN scales linearly with
the number of connections ncon, which is why a small number of connec-
tions is preferable (generalization is not an issue here). The classification
error CE(D) is measured on some data set D. The vector-valued function
f(NN) := (ncon(NN), CENN(D)) is subject to minimization. A small net-
work size and a high classification accuracy are possibly conflicting objectives,
see [3, 12].

7.3.1 Face detection data

Face detection is the inevitable first step in face recognition, aiming at localizing
and extracting the regions of a video stream which contain a view of a human
face. The Viisage-FaceFINDER� video surveillance system [120] automatically
identifies people by their faces in a three-step process: first, regions of the video
stream that contain a face are detected, then specific face models are calculated,
and finally these models are compared with a database. The final face modeling
and recognition is done using Hierarchical Graph Matching (HGM, [54]), which
is an improvement of the Elastic Graph Matching method [81]. It is inspired by
human vision and highly competitive to other techniques for face recognition
[142]. To meet real-time constraints, the Viisage-FaceFINDER� requires very
fast and accurate image classifiers within the detection unit for an optimal
support of HGM.

90

Figure 7.1: The input to the face detection NN are 20 × 20 pixel feature sets
showing either frontal, upright face (positive) and nonface (negative) examples.
The feature extraction comprises rescaling, lighting correction, and histogram
equalization.

Inputs to the face detection NN are gray-scale images which have a size of
20 × 20 after the feature extraction transform. The fixed-size feature sets are
then classified as either containing or not containing an upright frontal face by
a task specific NN [53]. Training examples therefore show either frontal, upright
faces or nonfaces, see fig. 7.1. In Viisage-FaceFINDER� the NN is only a part
of a sophisticated face detection module, and its main task is to support the
time consuming HGM procedure with appropriate face images.

7.3.2 Car detection data

The car classification system that will be described here has been developed at
our lab [40] as a component of a comprehensive software framework for Advanced
Driver Assistance [10], containing modules responsible for lane detection, initial
car detection, car tracking, traffic sign detection and derived tasks. For the
purposes of car detection, a combination of initial detection and tracking was
used prior to the development of the car classifier module: initially detected
objects were tracked into adjacent frames, requiring only that they be found
again sufficiently often by the initial detection modules in order to be accepted
as cars. It is evident that this mechanism is less-than-perfect, because it takes
several frames’ time to eliminate incorrect hypotheses. Furthermore, once the
initial detection produces an object which is not a car but can be tracked easily,
that object will be accepted as a car (example: large rectangular traffic signs).
Therefore, an approach was needed that could provide an instantaneous and
accurate classification of car hypotheses. Inputs to the car detection NN are
gray-scale images of arbitrary size which are transformed to a more abstract
representation of size 14x14 by the feature extraction transform. The fixed-size
feature sets are then classified as either containing or not containing an upright
back view of a car. Training examples therefore show upright back views of cars
or arbitrary views of noncars, see fig. 7.2.

91

Figure 7.2: Upper half: Positive and negative training examples for the car task.
Lower half: schematic depiction of feature extraction in the car task. An ROI is
subdivided into NxN receptive fields (RF) and an identical procedure is applied
to each one. Gradient orientations in each RF are coarse-grained to k values,
and a total of k numbers is produced per receptive field. Each describes the
contribution of gradients oriented in direction k to the total gradient strength
in the RF. A choice was made using k = 4 and N = 7. A feature set thus
contains N2k values.

7.4 Optimization methods

The evolutionary optimization algorithm is presented together with multi-
objective selection and magnitude-based pruning, respectively.

Optimization is performed iteratively starting from an initial population
P(t=0) of NNs. The application of an optimization method to an initial popula-
tion of NNs lasting tmax iterations is called an optimization trial. An iteration
t includes reproduction, structure variation, and embedded learning with some
kind of cross-validation. These three steps generate the offspring population
O(t); the next parental population P(t+1) is generated from P(t) ∪ O(t). A sub-
sequent performance evaluation is used to update the archive A(t). The archive
represents the outcome of a trial after its completion at t = tmax.

92

Table 7.1: Facts about the example data sets.
property usage

data set size(cars) size(faces) positives Pruning Evolution

Dlearn 5000 3000 50% Learning Learning/Selection

Dval 5000 1400 50% Crossvalidation Crossvalidation/Selection

Dtest 5000 2000 50% Pareto dominance based archiving

Dext 5000 2200 50% Estimation of generalization loss

7.4.1 General properties of both optimization methods

In the subsequent paragraphs, each of the previously mentioned steps will be
outlined, focusing on key properties common to both optimization methods.

Initialization

The comparison of results from the face task will be performed on the basis of the
expert-designed 400-52-1 NN architecture, the face reference topology, proposed
by Rowley et al. [107]. This NN has been tailored to the face detection task and
has become a standard reference for NN based face detection [139]. No hidden
neuron is fully connected to the input but to certain receptive fields, see below.
The total number of connections amounts to 2905. This is in contrast to more
than 21,000 in a fully connected NN with an equal number of hidden neurons.

In the car task, each NN is initially fully connected, has 196 input neu-
rons, between 20 and 25 neurons in its hidden layer, one output neuron and
all forward-shortcuts and bias connections in place. This architecture will be
referred to as the car reference topology.

The NN classifiers receive a feature set computed from an ROI as input.
Feature sets represent key visual properties of the ROI. In the face task the 400
numbers in the feature set correspond to the pixels of the transformed image
patterns, see fig.7.3 (right) and fig.7.1, whereas in the car task the 196 numbers
in the feature set encode higher-order visual properties as a result of advanced
feature extraction methods, see fig. 7.2.

The parent population in P(t=0) is initialized with individuals representing
the reference topologies initialized with different small, random weight values
drawn from an uniform distribution.

Reproduction and variation

Each parent creates one child per generation. First, the parent is copied. The
offspring is then modified by elementary variation operators. This variation
process is significantly different for pruning and the evolutionary method.

All variation operators are implemented such that their application always
leads to valid NN graphs. A NN graph is considered to be valid if each hidden
node lies on a path from an input unit to an output unit and there are no cycles.
Further, the layer restriction, here set to a single hidden layer, has to be met.

93

Copying

Pruning Step

Learning
Initialization

Magnitude based pruning
(PR)

Evaluation

...

Archive

Objective 1

Objective n Evaluation
Re−

Learning

Learning

Adaptation
Probability
Operator

Evaluation

...

Objective 1

Objective n

Stopping
Criteria

(DM) NSGA−II deterministic scheme
(LA) Weighted linear aggregation

(TM) NSGA−II tournament scheme

+

Archive
Reproduction

Mutation

Initialization

Selection

1
32

Figure 7.3: Left, a schematic overview of the pruning method PR. Right, the
hybrid evolutionary algorithm EVO, see text.

Embedded learning

Let MSEa(D) and CEa(D) be the mean squared error and the classification
error in percent on a data set D of the NN represented by individual a. Let
ncon(a) denote the number of hidden neurons and weights of a, respectively.
The weights of every newly generated offspring a are adapted by gradient-based
optimization (“learning”, “training”) of MSEa(Dtrain). An improved version
of the Rprop [62, 104] algorithm is used for at most 100 epochs of training.
Finally, the weight configuration with the smallest MSEa(Dtrain)+MSEa(Dval)
encountered during training is regarded as the outcome of the training process
(i.e., some kind of cross-validation comes in) and stored in the genome of the
individual a in case of the face tasks (Lamarckian inheritance). In the car task,
Lamarckian inheritance is not applied: the weights before learning are always
re-initialized the same way as in the initialization of P(t=0).

The reason for using Lamarckian inheritance in the face but not in the car
task is that learning in the face task takes longer to converge. For example, the
best reference topology in the car task was found after 96 epochs of learning,
whereas in the face task it took 412 epochs. In the face task the accumulated
knowledge of the problem by Lamarkian inheritance is necessary, since no good
networks could be found during 100 epochs of embedded learning. Therefore a
good starting point is helpful. In contrast, in the car task the embedded learning
procedure is able to find good weight configurations during 100 epochs of weight
optimization, therefore Lamarckian inheritance is unnecessary and might even
result in disadvantages.

7.4.2 Magnitude-based network pruning

Pruning is a well-known reductionist method for obtaining smaller NN from
larger ones by iteratively eliminating certain weights. Magnitude-based prun-

94

ing is a simple heuristic, but has often been reported to give satisfactory results
(see [103] for a review of pruning methods); in addition, it is very easy to
implement and use. Preliminary experiments using more sophisticated prun-
ing methods [103] did not yield superior results and were therefore abandoned
in favor of the most simple method: magnitude-based pruning, to which will
be referred to as method PR. Please keep in mind that this does not make a
general statement about the effectiveness of different pruning methods. The
tested methods were Weight Elimination [127] and a sensitivity-based pruning
algorithm [73], and although they produced NNs with classification accuracies
comparable to method PR, the number of connections which could be eliminated
was lower than when using method PR, especially in the face task. Another rea-
son why magnitude-based pruning was finally chosen for this investigation was
the intent to show that even a very primitive (in this case, the most primitive)
optimization method can profit from multi-objective evaluation methods.

The basic loop for optimization using method PR is depicted in fig.7.3 (left).
Initialization of the first population P(t=0) is performed as described in sec-
tion 7.4.1, and reproduction simply copies the current population. Variation
(here: removal of weights) is applied identically in the face and the car tasks:
a percentage p of connections with the largest absolute weight is eliminated at
each iteration. Learning is performed as described in section 7.4.1.

7.4.3 The evolutionary multi-objective algorithm

Evolutionary algorithms have become established methods for the design of
NNs, especially for adapting their topology [60,89,140]. They are thought to be
less prone to getting stuck in local optima compared to greedy algorithms like
pruning or constructive methods [103,116].

The basic optimization loop of the hybrid evolutionary algorithm is shown
in fig. 7.3 (right). This scheme might be regarded as canonical evolutionary NN
optimization using direct encoding and nested learning. However, there are some
special features described in this section. Initialization is performed as described
in section 7.4.1. It will be sketched how offsprings are created and mutated.
After that, the peculiarities of the nested gradient learning procedure within
the evolutionary loop will be outlined. Afterwards, the selection procedures
which are considered in this work are explained. The section ends with the
description of the online strategy adaptation method for adjusting the operator
probabilities.

Reproduction and variation

As mentioned in section 7.4.1, each parent creates one child per generation;
reproduction copies the parent population. The offspring population is then
mutated by elementary variation operators. These are chosen randomly for each
offspring from a set Ω of operators and are applied sequentially. The process
of choosing and applying an operator is repeated 1 + x times, where x is an
individual realization of a Poisson distributed random number with mean 1.

95

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��
���
���
���
���

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

0

��
��
��
��

1 2 ... 19

���
���
���
���

��
��
��
��

��
��
��

��
��
��

Output

��
��
��

��
��
��

1
2

0

19

.
.

.

0 1 2 ... 19

Input

layer
Hidden

��
��
��
��

layer

node

cuboid

z1

z2

aj−1

aj

aj+1

Figure 7.4: Left, scheme of the delete-connection-RF operator used in the face
task. The picture also visualizes the NN input dimension and the receptive
field connectivity. Right, illustration how the crowding distance C(aj) [19] is
computed. The black dots are the elements of Mi+1 and the white dots belong
to ndom(Mi), the Pareto front of Mi.

The variational operators that are to be described are similar to those intro-
duced in [131]; The differences are due to the fact that it is a goal to reduce the
number of weights in the work presented here, whereas the corresponding goal
in [131] is to reduce the number of nodes.

There are four basic operators: add-connection, delete-connection, add-node , and
jog-weights.

add-connection A connection is added to the NN graph. This operation is se-
quentially applied to the NN until the number of newly added connections
amounts to 1% of the previously existent connections before add-connection

was applied to the NN.

delete-connection This operator is inspired by magnitude-based pruning. The
operator is rank-based as discussed by Braun [8]. The connections of the
NN are sorted by the absolute value of the corresponding weights. The
connection with rank number r given by

r := �W · (ηmax −
√

(η2
max − 4 · (ηmax − 1) · u))/(2 · (ηmax − 1))�

is deleted, so that connections with smaller weight have a higher probabil-
ity of being removed. Here �x� denotes the largest integer smaller than x,
W the number of weights, and u ∼ U [0, 1] is a random variable uniformly
distributed on [0, 1]. The parameter 1 < ηmax ≤ 2 controls the influence of
the rank and is set to its maximum value [129]. This operation is sequen-
tially applied to the NN until the number of deleted connections amounts
to 5% of the previously existent connections before delete-connection was
applied.

add-node A hidden node with bias parameter is added to the NN and connected

96

to the output. For each input, a connection to the new node is added with
probability pin = 1/16.

jog-weights This operator adds Gaussian noise to the weights in order to push the
weight configuration out of local minima and thereby to allow the gradient-
based learning to explore new regions of weight space. Each weight value is
varied with constant probability pjog = 0.3 by adding normally distributed
noise with expectation 0 and standard deviation σjog = 0.01.

There are 3 task-specific mutations within the face task, inspired by the con-
cept of “receptive fields”, that is, dimensions of the input space that corre-
spond to rectangular regions of the input image, cf. fig. 7.4 (left). The RF-
operators add-RF-connection, delete-RF-connection, and add-RF-node behave as their
basic counterparts, but act on groups of connections. They consider the topol-
ogy of the image plane by taking into account that “isolated” processing of
pixels is rarely useful for object detection. The RF-operators are defined as
follows:

add-connection-RF A valid, not yet existing connection, say from neuron i to j,
is selected uniformly at random. If the source i is not an input, the con-
nection is directly added. Otherwise, a rectangular region of the 20 × 20
image plane containing between 2 and M = 100 pixels including the one
corresponding to input i is randomly chosen. Dimensions of the rectan-
gular region are uniformly drawn, and the position is uniformly drawn
from the set of possibilities fulfilling boundary conditions (i.e., no rect-
angular regions should exceed the input layer dimensions). Then neuron
j is connected to all the inputs corresponding to the chosen image re-
gion. This operation is sequentially applied to the NN until the number of
newly added connections amounts to at least 1% of the previously existent
connections before add-connection-RF was applied.

delete-connection-RF An existing connection that can be removed, say from node
i to j, is selected at random. If the source i is not an input, the connection
is directly deleted. Otherwise, a decision is made whether a horizontal
or vertical receptive field is deleted. Assume that a horizontal field is
removed. Then delete-connection-RFx(i, j) is applied recursively to remove
the inputs from a connected pixel row:

delete-connection-RFx(i, j) Let (ix, iy) be the image coordinates of the
pixel corresponding to the input i. The connection from i to j is
deleted. If hidden node j is also connected to the input node k corre-
sponding to pixel (ix+1, iy), delete-connection-RFx(k, j) is applied. If j
is connected to node l corresponding to (ix−1, iy), then the operator
delete-connection-RFx(l, j) is called.

Deletion of a vertical receptive field (i.e., a connected pixel column) is
done analogously. This operation is sequentially applied to the NN until

97

the number of newly deleted connections amounts to at least 5% of the
previously existent connections before delete-connection-RF was applied.

add-node-RF A hidden node with bias connection is added and connected to the
output and a receptive field as in the add-connection-RF operator.

There is no operator for the deletion of hidden nodes; deletion of nodes hap-
pens only when nodes no longer have any ingoing or outgoing connections. The
basic operators add-connection, delete-connection and add-node are applied for the
car task. For the face task, the operator jog-weights and the three task-specific
mutations: add-RF-connection, delete-RF-connection, and add-RF-node are used in
addition. Generally, weight values of new connections (produced by the opera-
tors for addition of nodes and connections) are drawn uniformly as in the first
initialization of the population.

The parameter setting was not fine tuned. Instead, it was manually chosen
by plausibility arguments related to the objective of reducing the number of
connections in the NN. No general statement concerning the robustness of the
algorithm to the choice of the parameters can be made. It would be worth
investigating this topic in some future work.

Evaluations and selection in presence of multiple objectives

The goal is to find sparse NNs with high classification accuracy. That is, one tries
to optimize two different objectives. The evolutionary algorithm in fig.7.3(right)
performs advanced evolutionary MOO selection. It uses a selection method
based on the Fast Non-Dominated Sorting Genetic Algorithm (NSGA-II) [20].

First, the elements of the decision space are mapped to n-dimensional real-
valued vectors z = (z1, . . . , zn) of the objective space by the objective function
Φ : X → Rn. In this case, the individual a that has already finished training
is mapped to the vector Φ(a) = za = (nhid(a), CEa(Dtrain ∪ Dval)). Both ob-
jective components are subject to minimization. The elements of the objective
space are partially ordered by the dominance relation ≺ (z dominates z′) that
is defined by

z ≺ z′ ∈ Rn ⇔ ∀ 1 ≤ i ≤ n : zi ≤ z′i ∧ ∃ 1 ≤ j ≤ n : zj < z′j

stating that vector z performs better than z′ iff z is as least as good as z′ in
all objectives and better with respect to at least one objective. Considering a
set M of n-dimensional vectors, the subset ndom(M) ⊆ M consisting only of
those vectors that are not dominated by any other vector of M is called the
Pareto front of M . As in the NSGA-II (environmental) selection scheme, one
first assigns to each individual a ∈ P(t) ∪ O(t) a rank value R(t)(a) based on its
degree of non-domination in objective space. Let the chain of subsets Mi, i ∈ N,
be defined by by M1 ⊇ M2 := M1\ ndom(M1) ⊇ M3 := M2\ ndom(M2) ⊇ . . . ,
where A\B denotes the portion of the set A that is not part of set B. Then the
rank operator R(t)(a) assigns each individual a ∈ P(t) ∪ O(t) the index i of the
corresponding Pareto front ndom(Mi) that includes the objective vector of a.

98

Furthermore the NSGA-II ranking takes the diversity of the population (in
objective space) into account. The diversity is measured by the crowding dis-
tance C(a), the size of the largest cuboid (precisely the sum of its edges) in objec-
tive space enclosing the vector Φ(a) = za, a ∈ ndom(Mi), but no other objective
vector from ndom(Mi), see fig. 7.4 (right). Then all individuals a ∈ P(t) ∪ O(t)

are sorted in ascending order according to the partial order ≤n defined by

ai ≤n aj ⇔
(
R(t)(ai) < R(t)(aj)

)
or(

R(t)(ai) = R(t)(aj) ∧ C(ai) ≥ C(aj)
)

. (7.1)

The selection used in the evolutionary method is chosen to be an EP-style
tournament selection [30] with 5 opponents to determine the parents P(t+1) for
the next generation from P(t) ∪ O(t). The tournament selection is based upon
the objective vector Φ(a) = za = (ncon(a), CEa(Dtrain ∪ Dval)), and having a
“smaller” objective vector in the sense of the partial relation ≤n of eq. (7.1)
increases an individual´s chance of being selected.

Search strategy adaptation: Adjusting operator probabilities

A key concept in evolutionary computation is strategy adaptation, that is, the
automatic adjustment of the search strategy during the optimization process
[26, 59, 63, 115]. Not all operators might be necessary at all stages of evolution.
In the given case, questions such as when fine-tuning becomes more important
than operating on receptive fields cannot be answered in advance. Hence, the
application probabilities of the variation operators are adapted using the method
from Igel and Kreutz [59], which is inspired by Davis’ work [18]. The underlying
assumption is that recent beneficial modifications are likely to be beneficial in
the following generations. The use of search strategy adaptation is justified by
the investigations described in [59, 62].

The basic operators that are actually employed in a given optimization sce-
nario are divided into G groups, those adding connections, deleting connections,
adding nodes, deleting nodes, and solely modifying weights.

Let Ω be the set of variation operators and let p
(t)
o be the probability that

o ∈ Ω is chosen at generation t.
The initial probabilities for operators of a single group are identical and

add up to 0.25 = 1
G in the face task. In the car task the initial probabili-

ties for add-connection and add-node are set to 0.3, and the initial probability for
delete-connection it is set to 0.4. This produces a slight bias towards deleting
connections: usually with G = 3, the group probabilities should have been 1

3 .
Let O

(t)
o contain all offspring produced at generation t by an application

of the operator o. The case that an offspring is produced by applying more
than one operator is treated as if the offspring was generated several times,
once by each operator involved. The operator probabilities are updated every τ
generations. Here a choice of τ = 4 is made. This period is called an adaptation
cycle. The average performance achieved by the operator o over an adaptation

99

cycle is measured by

q(t,τ)
o :=

τ−1∑
i=0

∑
a∈O

(t−i)
o

max (0, B(t)(a))
/ τ−1∑

i=0

∣∣O(t−i)
o

∣∣ ,

where B(t)(a) represents a quality measure proportional to some kind of fitness
improvement. Let

B(t)(a) := R(t)(parent(a)) − R(t)(a) ,

where parent(a) denotes the parent of an offspring a. The operator probabilities
p
(t+1)
o are adjusted every τ generations according to eqns.

p̃(t+1)
o :=

{
ζ · q(t,τ)

o /q
(t,τ)
all + (1 − ζ) · p̃(t)

o if q
(t,τ)
all > 0

ζ/|Ω| + (1 − ζ) · p̃(t)
o otherwise

and
p(t+1)

o := pmin + (1 − |Ω| · pmin)p̃(t+1)
o

/∑
o′∈Ω

p̃
(t+1)
o′ .

The factor q
(t,τ)
all :=

∑
o′∈Ω q

(t,τ)
o′ is used for normalization and p̃

(t+1)
o stores

the weighted average of the quality of the operator o, where the influence of
previous adaptation cycles decreases exponentially. The rate of this decay is
controlled by ζ ∈ (0, 1], which is set to ζ = 0.3 in these experiments. The
operator fitness p

(t+1)
o is computed from the weighted average p̃

(t+1)
o , such that

all operator probabilities sum to one and are not lower than the bound pmin <

1/|Ω|. Initially, p̃
(0)
o = p

(0)
o for all o ∈ Ω.

The adaptation algorithm itself has free parameters, pmin, τ , and ζ. How-
ever, in general the number of free parameters is reduced compared to the
number of parameters that are adapted and the choice of the new parameters
is considerably more robust. Both τ and ξ control the speed of the adaptation;
a small ξ can compensate for a small τ (τ = 1 may be a reasonable choice in
many applications). The adaptation adds a new quality to the algorithm as
the operator probabilities can vary over time. It has been empirically shown
that the operator probabilities are adapted according to different phases of the
optimization process and that the performance of the structure optimization
benefits from this adaptation [59, 62, 131].

7.5 Multi-objective performance assessment

Many different proposals for comparing multi-objective outcomes have been
made, but common agreement as to which ones are generally preferable has not
yet been reached. For a review and comparison of multi-objective performance
indicators, see [77, 96, 143]. In this chapter, performance measures are used
which were found to be useful in past research, and which can be easily verified
by a visual inspection of the results.

100

To compare the multi-objective results produced by two methods, the pro-
cedures summarized in [131] are followed. For each NN, an objective vector z
consists of the qualities computed singly according to all objectives. No straight-
forward way to compare two arbitrary objective vectors is imposed, as could be
done e.g. by defining a scalar quality measure since this determines a prior
trade-off between objectives. The concepts and notation from section 7.4.3 are
used in what follows. The outcome of an optimization trial (for each method,
a total of T trials is performed) is characterized by the Pareto front A(t=tmax)

using A(t) := ndom(A(t−1) ∪ P(t)) with A(0) = ∅. In order to compare differ-
ent optimization methods, ways to compare a set of trial outcomes using one
method to the set produced by another method are needed. Elements of the
sets are the Pareto fronts from the last-generation archive of each trial. Given
two sets X and Y, weak dominance of sets (X � Y) is defined as

X �Y iff X �= Y and ∀ y ∈ Y : ∃ x ∈ X : y is weakly dominated by x. (7.2)

The hypervolume indicator HX [143] measures the percentage of objective space
weakly dominated by X. Other performance indicators measure how likely the
outcome Xi of trial i (using one optimization method) is to weakly dominate
all trial outcomes Yj (using another method) or to be incomparable to all of
them. Let V ⊆ Rn be the smallest cuboid enclosing all objective vectors and m
a measure. Performance indicators are defined as

PXi�Y := | {(Xi, Yj) : Xi � Yj , 1 ≤ j ≤ T } | · 1/T , (7.3)
PXi||Y := | {(Xi, Yj) : Xi � Yj ∧ Yj � Xi, 1 ≤ j ≤ T } | · 1/T (7.4)

HX :=
{
m({z ∈ V |∃z′ ∈ X : z′ ≺ z})/m(V)

} ∈ [0, 1] . (7.5)

In the following, Ai and Bi, 1 ≤ i ≤ T will always be used for trial outcomes
using method EVO and PR respectively. For the purposes of comparison, the
quantities HAi , HBi , PAi||B, PBi||A, PAi�B and PBi�A, their median and me-
dian absolute deviation (mad) are calculated.

7.6 Experimental setup

The following statements hold for methods EVO and PR: All NNs have one
hidden layer, activation functions are of logistic sigmoidal type. T = 10 trials
are simulated. For each trial, a choice of |P(t=0)| = 25 is made. In the car
task, each NN in P(t=0) is fully connected, has between 20 and 25 neurons in its
hidden layer and all forward-shortcuts and bias connections in place. At each
iteration t, P(t) is initialized with small random weight values between -0.05 and
0.05. This architecture is referred to as the car reference topology. In the face
task, P(t=0) is instantiated with 25 copies of the 400-52-1 architecture of [107],
the face reference topology, each of which is randomly initialized like the car
reference topology at t = 0.2 All trials of method PR are performed for 90

2For t > 0 the weight values of the predecessor are used for initialization prior to variation.

101

iterations at p = 10%.3 All method EVO trials are performed for 200 iterations.
The updating of the archives at each iteration is described in section 7.5.

Although cross-validation is applied when training the NNs, the evolutionary
or the pruning optimization (PR) may lead to overfitting. In this case they may
overfit to the patterns of Dtrain ∪ Dval. Hence, the data set Dtest is introduced
in addition to choose models that generalize well and store those in the archive
A(t). That is, Dtest is used for some kind of cross-validation of the evolutionary
or pruning process. As was already explained in 7.4.3, the archive A(t) at
t = tmax is taken to be the final outcome of an optimization trial. The data set
Dext, which does not enter into the optimization at any point, is used to finally
assess the performance of the members of the archive, therefore making sure the
obtained results are not due to overfitting.

The car and the face reference topologies are trained 100 times for 2000 it-
erations using the improved Rprop learning procedure on Dlearn and select the
network aref with the smallest classification error CE(Dval∪Dtest). In the follow-
ing, all results are normalized by the performance of aref.4 For example, the nor-
malized classification error of a NN a is given by CE′

a(D) = CEa(D)/CEaref(D)
and the normalized number of connections by n′

con(a) = ncon(a)/ncon(aref).

7.7 Results

The normalized results of the car and the face task are shown in fig. 7.5 as well
as in fig. 7.6 and 7.7. One perceives the surprisingly similar performance of the
two methods when applied to cars. While the evolutionary method performs
better, the differences are small5 and the errors of the generated NNs are similar
in similar regimes of ncon. In contrast, the differences between the two meth-
ods are quite pronounced when applied to the face task: here, the evolutionary
MOO is clearly superior. In both tasks, the distributions of the HAi and the
HBj differ in a statistically significant way.6 All results persist when considering
(ncon, CE(Dext)) instead of (ncon, CE(Dtest)), showing that no significant over-
fitting has occurred. An interesting observation was made when studying the
results of the car task: among the smallest generated NNs are some which have
no nodes at all in their hidden layer, making them essentially linear classifiers.
NNs of this type correspond to trade-offs where the objective of minimizing the
number of connections is important. It is very interesting to observe how the
optimization tries to find the simplest possible solution for a certain desired
trade-off. The performance of these linear classifier solutions is consistent with
initial experiments using linear classifiers on the car task, see section 7.2.

3No regular NN were ever produced afterwards. Reducing the pruning percentage p to the
point where 200 valid NN iterations could be produced did not change results.

4Keep in mind that the reference topologies are not arbitrary, but tuned extensively by
hand. They produce results that are highly competitive to other approaches in the literature.

5The actual numerical differences between indicator results can be misleading, since, e.g.,
the hypervolume indicator normalizes its results by the volume of the whole accessible objec-
tive space, see section 7.5.

6Wilcoxon Rank Sum Test, p < 0.001

102

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6

normalized classification error CE′(Dtest)

n
or

m
al

iz
ed

n
et

w
or

k
si

ze
n
′ co

n evolved classifiers
pruned classifiers

 0

 0.2

 1 2

pareto optimal

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6

normalized classification error CE′(Dtest)

n
or

m
al

iz
ed

n
et

w
or

k
si

ze
n

′ co
n evolved classifiers

pruned classifiers

 0

 0.2

 1 2

pareto optimal

performance median
indicator ±

(i = 1 . . . T) mad

{HAi
} 0.991±0.002

{HBi
} 0.982±0.001

{PAi�B} 0.1±0.15
{PAi||B} 0.9±0.15
{PBi�A} 0.±0.0
{PBi||A} 0.8±0.15

performance median
indicator ±

(i = 1 . . . T) mad

{HAi
} 0.958±0.012

{HBi
} 0.905±0.001

{PAi�B} 0.15±0.222
{PAi||B} 0.85±0.222
{PBi�A} 0.0±0.0
{PBi||A} 0.7±0.148

Figure 7.5: Left: results from the car task. Right: results from the face task.
Shown on top are the unions of all trial outcomes; members of their Pareto
fronts, called meta Pareto fronts, are shown in the magnifications. The only
pruned NN in the meta Pareto front of the car task is indicated by an arrow.
The performance indicators (tables at the bottom) are explained in the text.

7.8 Discussion

The result of the car task is interpreted as an indication that the problem class
is intrinsically easier7 than the face task. Therefore the simpler optimization
method can yield competitive performance. For the more difficult face task,
a sophisticated (here: evolutionary) optimization strategy is clearly favorable.
For the support of the interpretation about the difficulty of both tasks, one

may observe that the (absolute) error CE(Dtest) of the car reference topology is
3.5 times smaller than CE(Dtest) of the face reference topology. As the results
plainly show, optimization is unable to improve classification accuracy greatly
compared to the reference topologies which constitute approximate optima in
this respect. Therefore this difference in classification errors should be con-
sidered meaningful. Furthermore, optimization in the car task produced NNs
without a hidden layer which nevertheless had an (absolute) classification accu-
racy of about 80%. This is taken as a hint that the problem is almost linearly
separable and therefore can be considered ”easy”.

The embedding of structure optimization within an evolutionary MOO set-
ting leads to a notable advantage compared to the single-objective formulation
of the problem [131, 132]. There, a certain trade-off between partially conflict-

7w.r.t. the magnitude of the classification error of the best conceivable NN.

103

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

no
rm

al
iz

ed
 n

et
w

or
k

si
ze

 n
’ c

on

normalized classification error CE’(Dtest)

trial 1
trial 2
trial 3
trial 4
trial 5
trial 6
trial 7
trial 8
trial 9

trial 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

no
rm

al
iz

ed
 n

et
w

or
k

si
ze

 n
’ c

on

normalized classification error CE’(Dtest)

trial 1
trial 2
trial 3
trial 4
trial 5
trial 6
trial 7
trial 8
trial 9

trial 10

Figure 7.6: Visual comparision of optimization results for the car task. All trial
outcomes (the final archives, i.e., Pareto fronts) from method EVO (left) and PR
(right) are plotted into a single diagram for each method. Note the similarity
between different trial outcomes of one method, making comparison to the other
method easy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

no
rm

al
iz

ed
 n

et
w

or
k

si
ze

 n
’ c

on

normalized classification error CE’(Dtest)

trial 1
trial 2
trial 3
trial 4
trial 5
trial 6
trial 7
trial 8
trial 9

trial 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

no
rm

al
iz

ed
 n

et
w

or
k

si
ze

 n
’ c

on

normalized classification error CE’(Dtest)

trial 1
trial 2
trial 3
trial 4
trial 5
trial 6
trial 7
trial 8
trial 9

trial 10

Figure 7.7: Visual comparison of optimization results for the face task. Results
of method EVO are shown on the left, results of method PR on the right. For
details, see fig.7.6.

ing objectives must be determined prior to search, thus disregarding certain
types of solutions. In MOO, the best attainable set of incomparable solutions
is generated first, and choice of specific solutions happens afterwards. It has
been demonstrated that simple structure optimization heuristics like pruning
can easily be incorporated in the framework of MOO. While this does not im-
prove the optimization results themselves, one can profit from the advantages
of MOO that were discussed previously.

104

Chapter 8

Discussion and outlook

The work presented in this thesis does not describe a single object detection
system but improvements to several aspects and subproblems of object detec-
tion. The goals have been to simplify the process wherever possible by neural
learning methods, and to reduce seemingly different aspects of object detection
to common principles.

8.1 Applications

Some of the results described in this thesis can be used directly to improve
existing object detection systems. Due to the focus of my research group, these
systems are concerned with object detection in traffic scenarios. Depending
on the type of traffic scenes that are considered, some assumptions about the
image content can be made. For example, well-marked lane borders can always
be expected in highway traffic scenes, road models can be expected to hold,
and the types of behaviorally relevant objects that can conceivably appear in
an image are limited. In contrast, inner-city scenes are much more complex and
unpredictable, road models hold only locally, if at all, and the recognition of a
variety of object types is necessary for assessing a situation correctly.

Highway traffic scenes are therefore a strongly simplified scenario, and any
object detection system should work reliably in this case. However, the object
detection systems developed at my research group are intended to perform well
even in more difficult surroundings.

Typical objects to be detected are cars, traffic signs and lane borders. The ef-
forts described below are already implemented or currently under development.
They are briefly described in order to demonstrate that the results obtained in
this thesis have direct consequences for technological applications.

Of equal importance are the possibilities for further academic research that
are suggested by this thesis; they are sketched further below.

105

8.1.1 Trainable initial detection

Using the results from chapter 6, it is possible to construct fast initial object
detectors that can be trained by examples. For this purpose, one simply uses
the sparse convolutional neural networks (SCNNs) from chapter 6, keeping the
network complexity (i.e., the number of independent parameters) as low as
possible, thus ensuring the fastest possible execution speed. The limited network
capacity may lead to misses or false detections; nevertheless, if the threshold that
defines the decision of the neural network (NN) is kept low, the detection can
be biased such that all incorrect classifications are false detections. This is not a
problem since one can use SCNNs of increased capacity as object classifiers that
classify only those ROIs that have been found by the initial detection. In this
way, the increased computational effort of simulating more complex networks
is only expended if it is really necessary, thus keeping the total processing time
low.

It is imperative not to train the object classifiers on the same data as the
initial detection SCNN. Instead, new training datasets must be constructed con-
taining all of the previous positive examples and the false detections produced
by the initial detection SCNN as negative examples.

This framework can be extended to include the simultaneous initial detec-
tion of several object classes using the feature base learning technique from
chapter 6. Although each object class requires a separate object classifier, this
does not increase the computational load greatly because object classifiers are
only applied to ROIs provided by the initial detection. Since initial detection
is performed using a common feature base, processing time is approximately
independent of the number of object classes provided that feature base learning
itself gives satisfactory results.

The facilitation of initial detection design is a general result of this thesis: in
the following section, a specialized application is presented which directly uses
the results described in chapters 4, 6 and 7.

8.1.2 Initial detection of cars and traffic signs

In order to make detection maximally robust, a project is currently pursued
to integrate histogram-based initial detection and initial detection with SCNNs.
For the purpose of performing initial detection using the SOE features described
in chapter 4, the whole image is partitioned into receptive fields (RF) in a way
that is similar to the partitioning of ROIs in chapter 4. By using NN classifiers
of various fixed sizes that are optimized for speed by magnitude-based pruning,1

the whole image can be scanned for objects very quickly. The NN classifiers are
identical to those described in chapter 7.

The SOE features are additive: this means that one can compute SOE fea-
tures at coarser spatial scales directly from the SOE features of finer scales.

1It was shown in chapter 7 that pruning is an acceptable optimization method for the car
classification problem. Since traffic sign classification gives comparable classification errors, it
is assumed that pruning can be applied there, too.

106

SOE

AND

SCNN

Figure 8.1: Initial detection (for clarity, only car detection is shown) by a com-
bination of simple SCNN classifiers (upper right) discussed in chapter 6 and
NN classifiers that rely on the SOE features (upper left) described in chapter
4. For the latter, the image is subdivided into small receptive fields (indicated
by the grid structure) in each of which SOE features are computed. The NN
classifier is applied at various scales and all positions within the image that
are multiples of the receptive field size. In contrast, the SCNN classifier can
be replicated over the whole image (also at several spatial scales) using finer
intervals that are defined by the structure of the SCNN. The application at
all possible locations is indicated by arrows in the upper row of images. The
”AND”-operation symbolizes that ROIs must be detected by both methods in
order to be considered

Therefore, no new information can be gained by computing SOE features at
multiple scales, and the use of differently sized classifiers for multiscale object
detection is thus justified.

The results of initial detection using the SOE features are compared to those
obtained from the trainable initial detection using SCNNs. Only those objects
that are found by both methods are considered to be detections, although a more
flexible combination strategy may be favorable. Detections are then examined
by object classifiers implemented by a more complex SCNN in case of cars,
and by a correlation-based classifier in the case of traffic signs. Please see
fig. 8.1 for an overview of the initial detection architecture. Initial results are
very promising both from the point of view of detection accuracy and real-time
capability.

8.1.3 Classification of lane borders

The correct detection of lane and road borders can simplify the analysis of traffic
scenes considerably. On the one hand, certain image regions can be excluded

107

from further analysis, and on the other hand, assumptions can be made about
the object classes to be expected on and off a road.

Figure 8.2: Lane detection by combining a specialized initial detection algorithm
and an SCNN classifier. The initial detection produces points (indicated by
small black boxes) which are conjectured to lie on a lane border. The classifier
considers a small ROI around those points for its decision. Confirmed lane
borders are indicated by bright boxes.

Since lane and road borders are essentially white lines, the initial detection
task is comparatively simple; in contrast, real-time constraints tend to be much
more restrictive because other, more time-consuming detection tasks must also
be performed in real-time. Computationally demanding feature extraction is
thus out of the question as well as classification with complex NNs. For this
reason, SCNNs are employed for classifying ROIs; the ROIs are found by an ini-
tial detection system that was designed by an industrial partner. The advantage
in this case lies in the fact that no feature extraction needs to be performed, and
that the classification is fast enough to process more than 100 ROIs per image
under real-time conditions (approximately 25 images per second). A typical
image with correctly classified ROIs is shown in fig. 8.2.

8.2 Opportunities for further research

Beyond the mere applications that can be realized and that were described in
the previous section, a number of interesting research topics suggest themselves
based on results presented in this thesis. Without going into details too much,
some of the possibilities are outlined.

8.2.1 Extensions of the SCNN model

The SCNN model is considerably simplified compared to the original CNN pro-
posal [83]. This is quite intentional; however, experiments need to be conducted
to find out if extensions to the SCNN model can improve its capabilities. In this

108

respect, the inclusion of downsampling layers (as in [83], also sketched in fig. 3.2)
is worth investigating, and furthermore the possibility of shortcut connections
that bypass one or several layers.

8.2.2 Research of new unsupervised learning terms for the
SCNN model

The SCNN learning rule presented in chapter 6 uses an approximation to the
nonlinear subspace PCA learning rule. Two issues are of interest in this respect:
First of all, it would be interesting to know if other learning rules could be used.
For example, it is conceivable that rules associated with independent component
analysis (ICA, see, e.g., [57]) may yield superior results. On the other hand,
the question is of interest how features can be generated that are correlated
with the object class. Stated in another way, it should be found out if certain
local features are characteristic of a certain object class per se, and, if so, what
learning rule is needed to obtain them. Some interesting results have been
published recently in this direction [49, 109] which could serve as a starting
point for investigations.

8.2.3 Comparison of designed and learned feature extrac-
tion schemes

The SCNN model claims to compute meaningful and diverse object features
as a part of its learning algorithm. It would be interesting to find out how the
SCNN model (possibly extended using ideas from the previous section) compares
to classifiers using feature extraction schemes tailored to suit their classification
problems. This comparison has been done in chapter 6 for the car classification
task with good results. Nevertheless, an investigation using a larger number of
classification problems as benchmarks is desirable.

8.2.4 Ensemble learning with members of Pareto fronts

Multi-objective structure optimization of object classifiers as presented in chap-
ter 7 produces no single best NN solutions but Pareto fronts of solutions. Each
member of a Pareto front is optimal w.r.t. a certain trade-off between all opti-
mization objectives. When using the objectives of speed (number of NN connec-
tions) and classification accuracy, this means that members of the Pareto front
will vary from very small NNs with suboptimal classification accuracy to large
NNs with optimal accuracy. Recently, ensemble learning methods have become
popular [111]; it could be investigated if classification results can be improved
using the AdaBoost method [111] with selected NNs from a Pareto front as an
ensemble. Depending on the ensemble size, this would slow down classification;
in addition, large NNs may be ensemble members, leading to a further increase
in computational complexity. This need not necessarily be a problem if initial
detection performs sufficiently well, which means that the number of objects to
be examined by an ensemble classifier stays within reasonable limits.

109

AdaBoost has been shown to be beneficial w.r.t. classification accuracy and
generalization ability; an empirical observation that has not yet been sufficiently
explained is the fact that AdaBoost tends to be very resistant to overfitting.

8.2.5 Saliency-based object detection

The saliency map model presented in chapter 5 is currently not suitable for
real-time applications but very interesting for addressing general issues of visual
learning.

Figure 8.3: Example of a difficult detection task: The head of the pedestrian
cannot be discerned from the background. This creates problems for detection
strategies that attempt to find whole objects, in this case pedestrians.

Of particular interest to me is the issue of detecting object parts; this prob-
lem arises whenever the initial detection of whole objects is difficult. A good
example is the problem of pedestrian detection (see fig. 8.3). In such situations,
objects could be detected by finding parts of them first, and then inferring the
position of whole objects from the positions of their parts.

Trainable saliency maps may prove to be an important tool for addressing
this and related problems. The following interdependent questions seem—in my
opinion—to be of special relevance:

• Can object part categories be learned from salient object regions?
This can be tested by calculating the saliency map not for a whole image
but only for ROIs containing training examples. By the procedure de-
scribed in the discussion of chapter 5, a sequence of salient regions can be
obtained in decreasing order of saliency. Then, after estimating the scale
of the salient region (this should be possible by determining the scale of
the strongest local feature map response), an unsupervised learning algo-
rithm can be applied to the salient region that attempts to cluster the
image content into categories. Self-organizing maps [78, 123] or similar
learning methods may be of relevance at this point.

110

• Can an object be robustly classified by classifying the learned parts? Pro-
vided it is possible to learn object part categories, the learned categories
could be used to characterize an object; of special interest is the question
whether this is also possible when the object is partly occluded.

• Can objects be found by detecting previously learned object parts? Again,
provided that object parts have been attributed to salient areas within
objects, it is a question whether those areas are salient enough (or can
be made so by learning) to be detected quickly in a cluttered image. A
powerful learning algorithm for saliency maps will be crucial to these in-
vestigations.

111

I hereby declare this thesis finished. May you enjoy the
bibliography!

112

Bibliography

[1] H. A. Abbass. Speeding up backpropagation using multiobjective evolu-
tionary algorithms. Neural Computation, 15(11):2705–2726, 2003.

[2] C. Bahlmann, Y. Zhu, V. Ramesh, M. Pellkofer, and T. Koehler. A system
for traffic sign detection, tracking, and recognition using color, shape and
motion information. In Proceedings of the IEEE Symposium on Intelligent
Vehicles, pages 255–260, 2005.

[3] P. L. Bartlett. The sample complexity of pattern classification with neural
networks: The size of the weights is more important than the size of the
network. IEEE Transactions on Information Theory, 44(2):525–536, 1998.

[4] E. Baum and D. Haussler. What network size gives valid generalizations?
Neural Computation, 1:151–160, 1989.

[5] H.-G. Beyer and H.-P. Schwefel. Evolution strategies: a comprehensive
introduction. Natural computing, 1(1), 3-52 2002.

[6] B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal
margin classifiers. In COLT, pages 144–152, 1992.

[7] R. Bracewell. Convolution Theorem. The Fourier Transform and Its Ap-
plications. New York: McGraw-Hill, 3rd edition, 1999.

[8] H. Braun. Neurale Netze: Optimierung durch Lernen und Evolution.
Springer-Verlag, 1997.

[9] L. Breimann. Classification and regression trees (CART). Wadsworth,
Inc. Monterey, 1984.

[10] T. Bücher, C. Curio, H. Edelbrunner, C. Igel, D. Kastrup, I. Leefken,
G. Lorenz, A. Steinhage, and W. von Seelen. Image Processing and Be-
haviour Planning for Intelligent Vehicles. IEEE Transactions on Industrial
Electronics, 90(1):62–75, February 2003.

[11] F. Canny. A computational approach to edge detection. IEEE Transac-
tions on Pattern analysis and machine intelligence, 8:679–698, 1989.

113

[12] R. Caruana, S. Lawrence, and C. L. Giles. Overfitting in neural networks:
Backpropagation, Conjugate Gradient, and Early Stopping. In Advances
in Neural Information Processing Systems, volume 13, pages 402–408.
MIT Press, 2001.

[13] N. Christianini and J. Shawne-Taylor. An introduction to support vector
machines. Cambridge University Press, 2000.

[14] M. Chun and J. Wolfe. Visual attention. In E. Goldstein, editor, Black-
well’s Handbook of Perception, chapter 9, pages 272–310. Oxford, UK:
Blackwell, 2001.

[15] C. Coello Coello, D. Van Veldhuizen, and G. Lamont. Evolutionary Algo-
rithms for Solving Multi-objective Problems. Kluwer Academic Publishers,
New York, 2002.

[16] S. Corchs and G. Deco. Feature-based attention in human visual cortex:
simulation of fMRI data. NeuroImage, 21:36–45, 2004.

[17] S. Costa and S. Fiori. Image compression using principal component neu-
ral networks. Image and Vision Computing, 19(9-10):649–668, 2001.

[18] L. Davis. Adapting operator probabilities in genetic algorithms. In J. D.
Schaffer, editor, Proceedings of the Third International Conference on Ge-
netic Algorithms, ICGA’89, pages 61–69. Morgan Kaufmann, 1989.

[19] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons, Chichester, UK, 2001.

[20] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evo-
lutionary Computation, 6(2):182–197, 2002.

[21] G. Deco and E. Rolls. A neurodynamical cortical model of visual attention
and invariant object recognition. Vision Research, 44:621–642, 2004.

[22] R. Desimone. Visual attention mediated by biased competition in extras-
triate visual cortex. Phil.Trans. R. Soc. Lond. B, 353:1245–1255, 1998.

[23] K. Diamantaras and S. Kung. Matrix Computations. The John Hopkins
University Press, 3rd edition, 1996.

[24] E. Dickmanns and B. Mysliwetz. Recursive 3-D road and relative ego-
state recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2):199–213, 1992.

[25] J. Duncan. The locus of interference in the perception of simultaneous
stimuli. Psychol. Rev., 87:272–300, 1980.

114

[26] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation,
3(2):124–141, 1999.

[27] W. Einhäuser, C. Kayser, K. Körding, and P. König. Learning dis-
tinct and complementary feature-selectivities from natural colour videos.
Rev.Neurosci, 14:43–52, 2003.

[28] D. Ferster and K. Miller. Neural mechanisms of orientation selectivity in
the visual cortex. Annual Review of Neuroscience, 23:441–471, 2000.

[29] J. E. Fieldsend and S. Singh. Pareto evolutionary neural networks. IEEE
Transactions on Neural Networks, 16(2):338–354, 2005.

[30] D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. IEEE Press, Piscataway, NJ, USA, 1995.

[31] U. Franke and I. Kutzbach. Fast stereo based object detection for stop-
and-go traffic. In Proceedings of the IEEE Symposium on Intelligent Ve-
hicles, pages 339–344, 1996.

[32] W. Freeman and E. Adelson. The design and use of steerable filters. IEEE
Transactions on Pattern analysis and machine intelligence, 13(9):891–906,
1991.

[33] N. Friemann, D. Geiger, and M. Goldszmidt. Bayesian network classifiers.
Machine Learning, 29:131–163, 1997.

[34] S. Frintrop, G. Backer, and E. Rome. Simulating visual attention for
object recognition. In Proceedings of the Annual Meeting of the German
Association for Pattern Recognition (DAGM ’05), 2005.

[35] S. Frintrop and E. Rome. Simulating visual attention for object recogni-
tion. In Proceedings of the Workshop on Early Cognitive Vision, 2004.

[36] K. Fukunaga. Introduction to statistical Pattern Recognition. Academic
press, New York, 1990.

[37] C. Garcia and M. Delakis. Convolutional face finder: A neural architecture
for fast and robust face detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(11):1408–1423, November 2004.

[38] N. Garcia-Pedrajas, C. Hervas-Martinez, and J. Munos-Perez. Multi-
objective cooperative coevolution of artificial neural networks (multi-
objective cooperative networks). Neural Networks, 15:1259–1278, 2002.

[39] A. Gepperth. Visual object classification by sparse convolutional networks.
In Proceedings of the European Symposium on Artificial Neural Networks
(ESANN) 2006. d-side publications, 2006. submitted.

115

[40] A. Gepperth, J. Edelbrunner, and T. Bücher. Real-time detection of
cars in video sequences. In Proceedings of the IEEE Intelligent Vehicles
Symposium (IV2005), June 2005.

[41] A. Gepperth and S. Roth. Applications of multi-objective structure opti-
mization. In M. Verleysen, editor, Proceedings of the European Symposium
on Artificial Neural Networks, 2005.

[42] M. Girolami. Self-Organising Neural Networks - Independent Component
Analysis and Blind Source Separation. Springer-Verlag, 1999.

[43] C. Goerick, D. Noll, and M. Werner. Artificial neural networks in real-
time car detection and tracking applications. Pattern Recognition Letters,
17, 1996.

[44] G. Golub and C. van Loan. Principal Component Neural Networks: The-
ory and Applications. Wiley, 1996.

[45] J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, J. Fernandez, and A. Diaz.
Multiobjective evolutionary optimization of the size, shape, and posi-
tion parameters of radial basis function networks for function approxima-
tion. IEEE Transactions on Neural Networks, 14(6):1478– 1495, Novem-
ber 2003.

[46] I. Guyon and A. Elisseeff. An introduction to variable and feature selec-
tion. Journal of Machine Learning Research, 3:1157–1182, 2003.

[47] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation
in evolution strategies. Evolutionary Computation, 9(2):159–195, 2001.

[48] C. Harris and M. Stephens. A combined corner and edge detector. In
Proc. Alvey Vision Conf., Univ. Manchester, pages 147–151, 1988.

[49] S. Hasler, H. Wersing, and E. Körner. Class-specific sparse coding for
learning of object representations. In Proc. Int. Conf. on Artif. Neur.
Netw. ICANN, pages 475–480, 2005.

[50] T. Hastie and W. Stuetzle. Principal curves. Journal of the American
Statistical Association, 84:502–516, 1989.

[51] D. Hebb. The organization of behaviour. Wiley, New York, 1949.

[52] E. Hjelmas and B. K. Low. Face detection: A survey. Computer Vision
and Image Understanding, 83:236–274, 2001.

[53] H. M. Hunke. Locating and tracking of human faces with neural networks.
Master’s thesis, University of Karlsruhe, Germany, 1994.

116

[54] M. Hüsken, M. Brauckmann, S. Gehlen, K. Okada, and C. von der Mals-
burg. Evaluation of implicit 3D modeling for pose invariant face recog-
nition. In A. K. Jain and N. K. Ratha, editors, Defense and Security
Symposium 2004: Biometric Technology for Human Identification, vol-
ume 5404 of Proceedings of SPIE. The International Society for Optical
Engineering, 2004.

[55] D. Huttenlocher, G. Klandermann, and W. Rucklidge. Comparing Images
Using the Hausdorff Distance. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 15(9):850–863, 1993.

[56] A. Hyvärinen. Fast and robust fixed-point algorithms for independent
component analysis. IEEE Transactions on Neural Networks, 10:626–634,
1999.

[57] A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis.
John Wiley and Sons, Inc., 2001.

[58] C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop
learning algorithm. Neurocomputing, 50(C):105–123, 2003.

[59] C. Igel and M. Kreutz. Operator adaptation in evolutionary computation
and its application to structure optimization of neural networks. Neuro-
computing, 55(1–2):347–361, 2003.

[60] C. Igel and B. Sendhoff. Evolutionary framework for the construction
of diverse hybrid ensembles. In 13th European Symposium on Artificial
Neural Networks (ESANN 2005), 2005.

[61] C. Igel and B. Sendhoff. Synergies between evolutionary and neural com-
putation. In M. Verleysen, editor, 13th European Symposium on Artificial
Neural Networks (ESANN 2004), pages 241–252. Evere, Belgien: d-side
publications, 2005.

[62] C. Igel, S. Wiegand, and F. Friedrichs. Evolutionary optimization of neu-
ral systems: The use of self-adptation. In M. G. de Bruin, D. H. Mache,
and J. Szabados, editors, Trends and Applications in Constructive Approx-
imation, number 151 in International Series of Numerical Mathematics,
pages 103–123. Birkhäuser Verlag, 2005.

[63] C. Igel, S. Wiegand, and F. Friedrichs. Evolutionary optimization of neu-
ral systems: The use of self-adptation. In M. G. de Bruin, D. H. Mache,
and J. Szabados, editors, Trends and Applications in Constructive Approx-
imation, number 151 in International Series of Numerical Mathematics,
pages 103–123. Birkhäuser Verlag, 2005.

[64] L. Itti, C. Gold, and C. Koch. Visual attention and target detection in
cluttered natural scenes. Opt. Eng., 40(9):1784–1793, 2001.

117

[65] L. Itti and C. Koch. A saliency-based search mechanism for overt and
covert shifts of visual attention. Vision Research, 40:1489–1506, 2000.

[66] L. Itti and C. Koch. Fea ture combination strategies for saliency-based
visual attention systems. Journal of Electronic Imaging, 2001.

[67] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual atten-
tion for rapid scene analysis. IEEE Transactions on pattern analysis and
machine intelligence, 20:1254–1259, 1998.

[68] B. Jähne. Digital image processing - Concepts, Algorithms and Scientific
Applications, 3rd edition. Springer Verlag, Berlin, 1995.

[69] B. Jähne. Digital image processing. Springer-Verlag, 1999.

[70] Y. Jin, T. Okabe, and B. Sendhoff. Neural network regularization and
ensembling using multi-objective evolutionary algorithms. In Proceedings
of the Congress on Evolutionary Computation (CEC’04), pages 1–8. IEEE
Press, 2004.

[71] J. Karhunen and J. Joutsensalo. Representation and separation of signals
using nonlinear PCA-type learning. Neural Networks, 7(1):113–127, 1994.

[72] J. Karhunen and J. Joutsensalo. Generalizations of principal component
analysis, optimization problems, and neural networks. Neural Networks,
8(4):549–562, 1995.

[73] E. Karnin. A simple procedure for pruning back-propagation trained net-
works. IEEE Transactions on Neural Networks, 1(2):239–242, 1990.

[74] S. Kastner and G. Ungerleider. The neural basis of biased competition in
human visual cortex. Neuropsychologia, 39:1263–1276, 2001.

[75] G. Keys. Cubic convolution interpolation for digital images. Transactions
on Acoustics, Speech and Signal Processing, 29:1153–1160, 1981.

[76] R. Klein. Inhinition of return. Trends in Cognitive Sciences, 4(4):138–146,
2000.

[77] J. Knowles, L. Thiele, and E. Zitzler. A tutorial on the performance assess-
ment of stochastic multiobjective optimizers. 214, Computer Engineering
and Networks Laboratory (TIK), Swiss Federal Institute of Technology
(ETH), Zurich, July 2005.

[78] T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in In-
formation Sciences. Springer, Berlin, Heidelberg, New York, 3rd edition,
2001.

[79] V. Kotelnikow. On the transmission capacity of ”ether” and wire in elec-
trocommunications. In Izd. Red. Upr. Svyazzi RKKA, volume 2, 1933.

118

[80] M. Kramer. Nonlinear principal component analysis using autoassociative
neural networks. AIChE Journal, 37(2):233–243, 1991.

[81] M. Lades, J. C. Vorbrüggen, J. Buhmann, J. Lange, C. von der Malsburg,
R. P. Würtz, and W. Konen. Distortion invariant object recognition in the
dynamic link architecture. IEEE Transactions on Computers, 42:301–311,
1993.

[82] J. Langford. Tutorial on practical prediction theory for classification.
Journal of Machine Learning Research, 6:273–306, 2005.

[83] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proc. IEEE, 86(11):2278–2324, 1998.

[84] Y. LeCun, F.-J. Huang, and L. Bottou. Learning methods for generic
object recognition with invariance to pose and lighting. In Proceedings of
CVPR’04. IEEE Press, 2004.

[85] D. Lowe. Object recognition from local scale-invariant features. In Pro-
ceedings of the International Conference on Computer Vision, pages 1150–
1157, 1999.

[86] C. McAdams and J. Maunsell. Attention to both space and feature modu-
lates neuronal responses in macaque area v4. Journal of Neurophysiology,
83:1751–1755, 2000.

[87] A. Messiah. Quantum mechanics. North-Holland, Amsterdam, 1968.

[88] P. Milner. A brief history of the hebbian learning rule. Canadian Psy-
chology, February 2003.

[89] S. Nolfi. Evolution and learning in neural networks. In M. A. Arbib, editor,
The Handbook of Brain Theory and Neural Networks, pages 415–418. MIT
Press, 2nd edition, 2002.

[90] H. Nyquist. Certain topics in telegraph transmission theory. Trans. Amer.
Inst. Elect. Eng., 47:617–644, 1928. Reprint in: Proc.. IEEE, Vol. 90, No.
2, (Feb 2002).

[91] E. Oja. A simplified neurons model as a principal component analyzer. J.
of Mathematical biology, 15:267–273, 1982.

[92] E. Oja. Subspace methods of pattern recognition. Research Studies Press,
England and Wiley, USA, 1983.

[93] E. Oja. Data compression, feature extraction, and autoassociation in
feedforward neural networks. In Proc. Int. Conf. on Artificial Neural
Networks (ICANN), pages 737–745, 1991.

119

[94] E. Oja and J. Karhunen. On stochastic approximation of the eigenvec-
tors and eigenvalues of the expectation of a random matrix. J. of Math.
Analysis and Applications, 106:69–84, 1985.

[95] E. Oja, H. Ogawa, and J. Wangviwattana. Principal component analysis
by homogeneous neural networks, part i: the weighted subspace criterion.
IEICE Trans. on Information and Systems, E75-D:366–375, 1991.

[96] T. Okabe, Y. Jin, and B. Sendhoff. A critical survey of performance indices
for multi-objective optimisation. In Proceedings of the 2003 Congress on
Evolutionary Computation (CEC’03), pages 1053–1060. IEEE Press, 2003.

[97] B. Olshausen and D. Field. Natural image statistics and efficient coding.
Network: computation in neural systems, 7:333–339, 1996.

[98] M. Oren, C. Papageorgiou, P. Sinha, T. Osuna, and T. Poggio. Pedestrian
detection using wavelet templates. In Proc. Computer Vision and Pattern
Recognition, Puerto Rico, pages pp. 193–199, 1997.

[99] M. Oren, C. Papageorgiou, P. Sinha, T. Osuna, and T. Poggio. Pedestrian
detection using wavelet templates. In Proc. Computer Vision and Pattern
Recognition, Puerto Rico, pages pp. 193–199, 1997.

[100] D. Parkhurst, K. Law, and E. Niebur. Modeling the role of salience in the
allocation of overt visual attention. Vision Research, 42(1):107–123, 2002.

[101] P. Penev and J. Atick. Local feature analysis: A general statistical theory
for object recognition. Network: computation in neural systems, 7(3):477–
500, 1996.

[102] R. Peters, A. Iyer, L. Itti, and C. Koch. Components of bottom-up gaze
allocation in natural images. Vision Research, 45(18), 2397-2416 2005.

[103] R. D. Reed and R. J. Marks II. Neural Smithing. MIT Press, 1999.

[104] M. Riedmiller. Advanced supervised learning in multi-layer perceptrons –
From backpropagation to adaptive learning algorithms. Computer Stan-
dards and Interfaces, 16(5):265–278, 1994.

[105] M. Riesenhuber and T. Poggio. Hierarchical models of object recognition
in cortex. Nature Neuroscience, 2(11):1019–1025, 1999.

[106] A. Rosenfeld and A. Kak. Digital picture processing. Academic Press, San
Diego, 1982.

[107] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(1):23–38, 1998.

120

[108] A. Rybak, A. Gusakova, L. Golovan, and N. Shevtsova. A model
of attention-guided visual perception and recognition. Vision research,
38:2387–2400, 1998.

[109] Y. Sakaguchi, S. Ozawa, and M. Kotani. Feature extraction using su-
pervised independent component analysis by maximizing class distance.
In Proceedings of the 9th International Conference on Neural Information
Processing ICONIP, pages 2502– 2506, 2002.

[110] T. Sanger. Optimal unsupervised learning in a single-layered linear feed-
forward network. Neural Networks, 2:459–473, 1989.

[111] R. Schapire and Y. Freund. Boosting the margin: A new explanation for
the effectiveness of voting methods. In Proc. 14th International Conference
on Machine Learning, pages 322–330, 1997.

[112] H. Schneidermann and T. Kanade. A statistical method for 3d object
detection applied to faces and cars. In Proceedings of the IEEE Conference
on Computer Vision and Pattern recognition, 2000.

[113] C. Shannon. Communication in the presence of noise. In Proc. IRE,
volume 37, 1949. Reprint in: Proc.. IEEE, Vol. 86, No. 2, (Feb 1998).

[114] A. Shashua, Y. Gdalyahu, and G. Hayun. Pedestrian detection for driv-
ing assistance systems: Single-frame classification and system level per-
formance. In Proceedings of the IEEE Symposium on Intelligent Vehicles,
pages 1–6, 2004.

[115] J. E. Smith and T. C. Fogarty. Operator and parameter adaptation in
genetic algorithms. Soft Computing, 1(2):81–87, 1997.

[116] A. Stahlberger and M. Riedmiller. Fast network pruning and feature ex-
traction by using the unit-OBS algorithm. In M. C. Mozer, M. I. Jordan,
and T. Petsche, editors, Advances in Neural Information Processing Sys-
tems, volume 9, pages 655–661. The MIT Press, 1997.

[117] Z. Sun, G. Bebis, and R. Miller. Object detection using feature subset
selection. Pattern recognition, 37:2165–2176, 2004.

[118] M. Szarvas, A. Yoshizawa, M. Yamamoto, and J. Ogata. Pedestrian de-
tection using convolutional neural networks. In Proceedings of the IEEE
Symposium on Intelligent Vehicles, pages 224–229, 2005.

[119] S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human
visual system. Nature, 381:520, June 1996.

[120] Viisage Technology AG. http://www.viisage.com.

[121] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the IEEE Conference on Computer
Vision and Pattern recognition, 2001.

121

[122] P. Viola, M. Jones, and D. Snow. Pedestrian detection using patterns of
motion and appearance. In Proceedings of the Ninth IEEE International
Conference on Computer Vision, 2003.

[123] C. von der Malsburg. Self-organization of orientation sensitive cells in the
striate cortex. Kybernetik, 14:85–100, 1973.

[124] D. Walther, L. Itti, M. Riesenhuber, T. Poggio, and C. Koch. Atten-
tional selection for object recognition - a gentle way. In Proceedings of the
workshop on biologically motivated computer vision, volume 2525, pages
472–479, 2002.

[125] B. Wandell. Foundations of vision. Sunderland, Mass.: Sinauer Asso-
ciates, 1995.

[126] A. Webb. Statistical Pattern Recognition. Wiley, 2nd edition, 2002.

[127] A. S. Weigend, D. E. Rumelhart, and B. Huberman. Back-propagation,
weight elimination and time series prediction. In D. Touretzky, J. Elman,
T. Sejnowski, and G. Hinton, editors, Proceedings of the 1990 Connec-
tionist Models Summer School, pages 105–116. Morgan Kaufmann, Sant
Matteo, 1991.

[128] H. Wersing and E. Körner. Unsupervised learning of combination features
for hierarchical recognition models. In Proceedings of the ICANN, 2002.

[129] L. D. Whitley. The GENITOR algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best. In J. D. Schaffer,
editor, Proceedings of the Third International Conference on Genetic Al-
gorithms, ICGA’89, pages 116–121. Morgan Kaufmann, 1989.

[130] J. Whittaker. The fourier theory of the cardinal functions. In Proc.
Edinburgh Math. Soc., volume 1, 1929.

[131] S. Wiegand, C. Igel, and U. Handmann. Evolutionary multi-objective
optimisation of neural networks for face detection. International Journal
of Computational Intelligence and Applications, 4(3):237–253, 2004.

[132] S. Wiegand, C. Igel, and U. Handmann. Evolutionary optimization of
neural networks for face detection. In M. Verleysen, editor, 12th European
Symposium on Artificial Neural Networks (ESANN 2004), pages 139–144.
Evere, Belgium: d-side publications, 2004.

[133] C. Wöhler and J. K. Anlauf. Real-time object recognition on image se-
quences with the adaptable time delay neural network algorithm - ap-
plications for autonomous vehicles. Image and Vision Computing, 19(9-
10):593–618, 2001.

[134] J. Wolfe. Visual search. In H. Pashler, editor, Attention. London UK:
University College London Press, 1995.

122

[135] J. Wolfe. Extending guided search: why guided search needs a preattentive
”item map”. In A. Kramer, M. Coles, and G. Logan, editors, Converging
operations in the study of visual attention, pages 247–270. Washington
DC: American Psychological Association, 1996.

[136] J. Wolfe. Guided search 2.0: A revised model of visual search. Psycho-
nomic Bulletin & Review, 1(2):202–238, 1996.

[137] J. M. Wolfe. Visual search. In H. D. Pashler, editor, Attention. London
UK: University College London Press, 1998.

[138] L. Xu. Least mean square error reconstruction principle for self-organizing
neural nets. Neural Networks, 6:627–648, 1993.

[139] M.-H. Yang, D. J. Kriegman, and N. Ahuja. Detecting faces in images: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(1):34–58, 2002.

[140] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447, 1999.

[141] G. P. Zhang. Neural Networks for Classification: A Survey. IEEE Trans-
actions on System, Man, and Cybernetics – Part C, 30(4):451 – 462, 2000.

[142] W. Zhao, R. Chellappa, P. Phillips, and A. Rosenfeld. Face recognition:
A literature survey. ACM Computing Surveys (CSUR), 35(4):399 – 458,
2003.

[143] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca.
Performance assessment of multiobjective optimizers: An analysis and
review. IEEE Transactions on Evolutionary Computation, 7(2):117–132,
2003.

123

Errata

• In fig. 1.4 on p.21, the labels for the x and y axis should be ”Spatial
frequency” and ”Transfer function”

• In fig. 1.5 (left) on p.22, the z axis label should read ”Convolution filter”
instead of ”Transfer function”

• Figs. 8.1 and 8.2 on pages 106 and 107 were badly reproduced during
the printing process, so that important details cannot be perceived.
Correctly, they should look loke this:

SOE

AND

SCNN

124

