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Abstract—Optimizing an unknown objective function under
uncertainty requires a balance between exploration (learn more
about the objective) and exploitation (find the global optimum).
Safe optimization aims to guarantee that safety requirements
of the next observation to be performed are fulfilled before
performing it. Common approaches are based on Gaussian
process regression, also known as Kriging, as a surrogate model
iteratively estimating the safety and selecting next observations
by Bayesian optimization methods. The hyper-parameter setup
usually requires a lot of domain-specific knowledge (if no data
is available) or prior data to optimize the hyper-parameters.
But it is precisely the lack of these two factors that is the
main reason when safe optimization becomes interesting: If
the system is unknown and random experiments to generate
data are not allowed due to restrictions. We present a novel
method for safe Bayesian optimization with self-adapting hyper-
parameters, which requires only one safe initial observation and
easily selectable initial hyper-parameters. By safely self-adapting
the parameters, it is possible to find the global optimum with a
reliability regarding safety requirements. Thus, the method can
be used even with limited domain-specific expertise and covers
a wide range of applications with a minimum of customization.

Index Terms—Safety constrains, global optimization, Kriging,
Bayesian optimization, hyper-parameter adaption

I. INTRODUCTION

Minimizing uncertainty in machine learning is a research

topic with growing attention especially for environments with

safety requirements, e.g. applications in industrial plants are

not allowed to lead to downtime by a wrong decision or the

physical security of humans has to be ensured (autonomous

driving). The definition of safe optimization is to guarantee

that the safety requirements of the next observation to be

performed are fulfilled before performing it. This makes safe

optimization especially interesting for interacting with real
world applications, e.g. recommendation systems [1], quadro-

tor vehicles [2] or in industrial context [3]–[5]. Common

approaches are based on Gaussian process (GP) regression,

originally Kriging in geostatistics [6], because it provides

predictions of distributions instead of a point in contrast to

common regression models. These predicted distributions can

be used as a surrogate model iteratively estimating the safety

by predicting the uncertainty of potential next observations [2]

and then selecting the next observations with Bayesian op-

timization methods [7] by optimizing an acquisition func-

tion [8]. Even though there have already been applications

in various areas, safe global optimization is still scientifically

further investigated and developed from an algorithmic point

of view [9].

Here, the requirements regarding prior domain knowledge

about the objective function are problematic. Depending on

the domain, experts are not always able to provide abstract

mathematical information about the problem to be solved.

Unfavorably, exactly such abstract information is needed to set

up GP regression for safe optimization, including the selection

of hyper-parameters. A common approach is to optimize the

hyper-parameters of the GP regression by prior data, e.g [10],

[11], which is not always available for the given problem.

This is especially true in the context of safe optimization,

since it is not tolerated for such problems to perform prior

experiments with random outcome. To solve such problems,

we propose a method that allows a safe Bayesian optimization

with self-adapting hyper-parameters, which requires only one

safe initial observation and easily selectable initial hyper-

parameters. Thus, self-adaptive safe Bayesian optimization

(SASBO) can be used even with limited expertise, and is

ultimately a tool that is as general as possible and covers a

wide range of applications with a minimum of customization.

A. Own contributions

We introduce modifications of safe Bayesian optimiza-

tion methods automatically handling the majority of hyper-

parameters by running an optimization algorithm on some

parameters (length scales of the kernel and noise variance

of the GP) while iterative scaling the observations leads to a

good fit of the remaining and fixed properties (variances of the

kernel and the mean of the GP). Our evaluation demonstrate

reliability regarding the safety constraints and the resulting

optimized hyper-parameters.

II. BACKGROUND AND METHODS

We formulate the optimization problem of a d dimensional

nonlinear objective function f(x) as a maximization. Safe

optimization is defined by solving a general maximization

problem with constraints regarding tolerated observation val-

ues during the optimization. For example, no experiments are

allowed to lead to f(x) < fmin, where fmin is an user defined

threshold, not to be confused with the global minimum of the

f(x). The optimization goal is then:

max
x∈Xd

f(x) s.t. f(x) ≥ fmin. (1)

Restrictions based on other functions are possible, however,

for simplicity we continue with (1). We assume that f(x)
excluding the observation noise is at least quasi-continuous
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and thus continuous within the mentioned limitations of the

optimization space X d. Otherwise any significant discontinu-

ity, even with cautious exploration, could lead to an unex-

pected observation and thus make it impossible to ensure safe

exploration.

A. Gaussian process regression

We assume that each f(x) with different x is a random

variable and that a finite number N leads to a joint Gaussian

distribution [12]:

[f(x1), .., f(xN )] ∼ N (m(x1), ..,m(xN ), σ(x1), .., σ(xN )) .
(2)

Such a joint distribution of all random variables is a dis-

tribution of a GP. For regression, the GP is obtained by

multiple generated sample functions, each fitting the prior

measurement points, so-called observations, of f(x). Thus,

GP regression returns a mean and variance of the Gaussian

normal distribution for each x of the approximated unknown

function:

f(x) ∼ GP(m(x), k(x, x′)). (3)

By setting a prior mean function m(x) for the distribution,

one can adjust the average value over the generated sample

functions. Different kernels k(x, x′), also called covariance

functions, can be selected to define the covariance of any

two function values f(x) and f(x′) with specific smooth-

ness and periodicity modeling properties. In this way, GP

regression, originally Kriging in geostatistics [6], can be used

across disciplines, e.g. for geographic terrains [13], sensor

networks [14], or battery conditions [15]. We focus on the

radial basis function (RBF) kernel, also known as squared-

exponential kernel, which is widely used because of its infinite

derivatives and its property of universal integration against

most functions [16] (not only for GPs, but also for support

vector machines):

k(x, x′) = σ2 exp

(
− (x− x′)2

2�2

)
. (4)

The RBF kernel is parametrized by a scale parameter � (larger

values for smoother functions) and a variance σ2 (larger values

for larger average distance from function to GP mean). Since

the selection of other kernels might be more appropriate

for modeling an unknown function [12], the optimal kernel

selection remains a domain specific problem.

B. Bayesian optimization

Bayesian optimization [7], [11] is a method that iteratively

explores the unknown objective function f(x) in pursuit of

the global maximum by determining new query points of x.

After each iteration, f(x) is modeled with multiple sample

functions based on previous observations. Therefore we use

GP regressions with the RBF kernel, which is the most com-

mon probabilistic model used in Bayesian optimization [12].

The model returns predicted distributions for each x, providing

mean values μ(x) and the variance σ2(x) which indicates the

uncertainty of the models prediction at x. This can be used to

determine the most informative observation point for the next

iteration by constructing the acquisition function [17]. Such an

acquisition function indicates the expected information gain of

evaluating the objective function with specific x to minimize

the uncertainty at this point. For example, the upper confidence

bound (UCB) acquisition function for iteration n is defined by:

ui(x) = μi(x) + βσi(x), (5)

where β is the constant defining the scaling of the confi-

dence interval. The combination of exploitation (μi(x)) and

exploration (σi(x)) is chosen to minimize the number of

experiments required to approximate f(x). The observation

points for the next iteration is obtained by maximizing the

chosen acquisition function, e.g. UCB:

xi+1 = argmax
x∈Xd

ui(x), (6)

C. Safe Bayesian optimization

Safe Bayesian optimization [1] is a constrained Bayesian

optimization guaranteeing only observations within a pre-

defined safety restriction and therefore only partly global.

Here, each observation should be above the safety threshold

fmin, which limits the optimization space to the safe set

S = {x ∈ X d|f(x) ≥ fmin}. In this way, the algorithm mini-

mizes the risk of negative experiments during optimization [2]

by checking the safety requirements of the next observation

before performing it. Since the objective function f(x) is

unknown, the true safe set S can only be estimated. For this

estimation, the lower confidence interval can be used:

li(x) = μi(x)− βσi(x). (7)

Whenever the calculated lower limit of the interval results in

values above the defined safety threshold fmin, the points are

assumed to be safe:

Si = {(x) ∈ X d|li(x) ≥ fmin}. (8)

The estimation is made for each iteration i and the safe set

is extended during the exploration. Since the optimization no

longer considers the entire space X d, but the safe set Si, the

formula changes to:

xi+1 = argmax
x∈Si

ui(x). (9)

The most promising maximizers Mi (points with increased

probability where the global maximum could be located) of

the safe set are obtained by looking for all x where the upper

bound is larger than the largest lower bound:

Mi = {x ∈ Si|ui(x) ≥ max
x′∈Xd

li(x
′)}. (10)

To obtain possible expanders E (points with increased proba-

bility where the safe set could be extended) we implemented

an efficient method by interpreting S as d dimensional func-

tion:

Si(x) =

{
1, x ∈ Si
0, x �∈ Si . (11)
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The second derivatives of Si(x) is approximated by d dimen-

sional Laplace filtering (12) leading to our expander set with

simple logical comparisons:

Ei = {x ∈ Si|
d∑

r=1

∂2Si(x)

∂2x(r)2
< 0}. (12)

These potential observation points in E are a subset of S and

have a high expectation to extend the knowledge about the

objective function. Each experiment is a trade off between

finding the maximum and minimizing the uncertainty. Thus,

the observation points are selected within the union of both

calculated sets:

xi = argmax
x∈Ei∪Mi

(ui(x)− li(x)). (13)

III. SELF-ADAPTATION OF SAFE BAYESIAN

OPTIMIZATION

The hyper-parameter setup of the RBF kernel based GP

regression includes the length scale parameters � ∈ Ld and

the variances σ2 ∈ Od, as well as the noise variance σ2
noise.

Additionally, one can choose the mean function m(x) of

the GP regression. The selection of these 2d + 2 parame-

ters requires usually prior domain knowledge to predict the

rough characteristics of the objective function. Alternatively,

the hyper-parameters can be optimized by a large set of

observation points. In both ways, prior knowledge about the

objective function has to be provided before running a GP

regression based safe optimization.
To reduce the necessary prior knowledge for safe optimiza-

tion, we extend SafeOpt [1] (section II-C) by two steps, which

are described in this section. Both modifications are equally

applicable to other safe Bayesian optimization methods like

StageOpt [18]. We provide pseudo-code (Algorithm 1) for

comprehensibility with references to the formulas and infor-

mation specified in this paper. While the exploration iterations

are very conservative at the beginning, the updates of GP

hyper-parameters minimize the required iterations to find the

safe optimum, see toy example in Fig. 1.

A. Scaling the objective function
Since safe optimization does not consider the full objective

function, the unsafe regions can be interpreted as irrelevant

for the optimization and are not explored. By setting the mean

value over all sample functions of the GP regression at each

x to m(x) < fmin, it is more likely to predict values excluded

from S in the absence of knowledge to the contrary, e.g.

proximity to prior observations significantly above fmin. We

ensure this advantageous effect by scaling the safety threshold

to f ′
min = 1 and setting m(x) = 0. The second scaling point

for our iterative adaptive linear scaling transformation is the

currently known maximum f ′
i(x

∗) = 2, which leads to the

other scaled observation data:

y′ =
y − fmin

max(y)− fmin

+ 1, (14)

where y is the vector of all observation results. Whenever the

known maximum fi(x
∗) = max(y) exceeds the prior one,

the scaling denominator of (14) is changed and the whole set

of observation points is transformed again. The relative large

distance of the GP regression mean to f ′
min causes conservative

safety estimations for unknown regions of f(x). The scaling

transformation affects finally the results of the acquisition

function (13). To ensure a good optimization, a few iterations

with a greedy acquisition function like (5) within the subset

of the safe region can be helpful after the safe exploration

phase [18].

B. Constrained optimization of hyper-parameters

As the variances σ2 are only a scaling parameter that

depends on the absolute values of the objective function,

we can fix the variances with regard to the iterative scaling.

The remaining length scale kernel and noise variance hyper-

parameters θ = (�, σ2
noise) of the GP regression can be

optimized by maximizing the log marginal likelihood [12]:

θ∗ = argmax
θ

log p(y′|X, θ), (15)

where X is the data of all previous observation inputs. The

optimization leads to an trade-off between model fit and model

complexity. Evolutionary or conjugate-gradient algorithms are

able to analytically solve (15) because of the GP predictions.

We use the truncated Newton algorithm, also called Newton

conjugate-gradient method [19], to optimize every k iterations.

Information about our constrained optimization of d+1 hyper-

parameters is listed in Table I. These constraints avoid rapid

and unsafe modeling changes by setting length scale dependent

limits.

TABLE I
CONSTRAINTS OF GP ADAPTATION OPTIMIZATION

Parameters Comment Constraints
σ2 Variances of kernel fixed to 1.0
� Length scales of kernel (0.8 · �i, 1.4 · �i)

σ2
noise Noise variance of GP (0.001, 0.05)

Since too large length scales would cause uncertain explo-

ration, the parameters are reduced by 10% after optimization,

so that the resulting values are rather too small than too large.

This also reduces possible negative effects of optimization

variations which could endanger safety.

C. Remaining initialization efforts

Our hyper-parameter selection of the GP regression includes

only the initialization of length scales �0 ∈ Ld and noise vari-

ance σ2
0 noise. These parameters are easy to choose compared

to the standard method because low values of � and high

values of σ2
noise generally lead to safer but at the beginning

slower optimization and so only little prior knowledge of the

objective function is required, e.g. the knowledge of one single

safe starting point x0. If the objective function value f(x0) is

relatively close to fmin, as compared to the maximum f(x∗),
the length scale initialization should be smaller. Alternatively,

one wants to provide an assumption for the expected max-

imum fmax for the scaling step, ideally close to the global
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Safe optimization after 4 iterations Safe optimization after 20 iterations

safe region

expanders

maximizers

normalized model

objective function

uncertaincy

Fig. 1. Toy example for safe optimization: The true objective function (blue line) is normalized (black line) after each iteration while the estimations of safe
region S, expanders E and maximizers M are updated. During the safe optimization, no experiments lead to objective result values below the threshold (red
dashed line). Learning more about the unknown objective function initialize updates of GP hyper-parameters which minimize the required iterations to find
the safe optimum.

Algorithm 1 SASBO

Input: fmin, fmax, �0, σ2
0 noise, x0

Output: GP
1: Run experiment and get f(x0)
2: initialize GP with �0, σ2

0 noise, σ2
1..d = 1.0 and f(x0)

3: for i = 1 to N do
4: Estimate Si by (8)

5: Calculate Mi by (10)

6: Calculate Ei by (12)

7: Calculate xi by (13)

8: Run experiment and get f(xi)
9: Scale all observations by (14)

10: Update GP
11: if i mod k = 0 then
12: Update constraints according to Table 3

13: Optimize �i and σ2
i noise by (15)

14: Decrease �i by 10%

15: Update GP with new hyper-parameters

16: end if
17: end for
18: return GP

maximum fmax ≈ f(x∗). However, every provided value with

f(x0) < fmax < f(x∗) is helpful to reduce this effect.

For the safe optimization, further hyper-parameters have to

be selected: β, fmin, a threshold for expander regulation [2] and

sometimes Lipschitz parameters [1], [9] to estimate the safe

set. With our modifications, the static selection of β = 3.0
is recommended throughout, while the latter two parameters

are omitted. This simplifies the application when the objective

function is unknown. Instead of choosing the optimal length

scale by system knowledge (e.g. prior experiments or exper-

tise), one simply chooses length scales that are rather too small

at the beginning (smaller initialization values mean slower, but

safer optimization). For the batch size, k should be selected

rather too large, because especially in the beginning of the

optimization enough knowledge has to be generated before

a safe adaption can be possible. Therefore, the optimal k is

related to the multi-dimensionality of the objection function,

since information should be existing about each dimension.

In Table II the recommendations of hyper-parameter selection

are summarized.

TABLE II
HYPER-PARAMETERS OF SAFE OPTIMIZATION

Parameters Comment Selection
�0 ∈ Ld Init. length scales of kernel rather too small
σ2
0 noise Init. noise variance of GP 0.01
β Multiplier for confidence interval 3.0
k Batch size increases with d,

rather too large
fmax Assumption for global maximum optional

IV. EVALUATION

For the evaluation, the inverted Styblinski-Tank function

is a good optimization problem because it can be resized to

arbitrary dimensions d. To evaluate also the reliability of the

length scale adaption with 16 different objective functions,

we extend the Styblinski-Tank function by a transformation

for independently scaling the dimensions with a vector h:

f(x) =
−1
2

d∑
r=1

(
x(r)

h(r)

)4

− 16

(
x(r)

h(r)

)2

+ 5

(
x(r)

h(r)

)
. (16)

There is one global maximum x∗ ≈ (−2.9, ...,−2.9) · h
within the optimization space x(r) ∈ [−5 · h(r), 5 · h(r)]. The

modification allows us to evaluate the iterative optimization of

the length scale parameters �1..d. We randomly initialize the

optimization with x0 where f(x0) ≥ 15, see green regions in

Fig. 2. The safety constraint is defined by fmin = 10.0 leading

to unsafe regions indicated in gray in Fig. 2.

We initialize the length scale parameters �1..d = 0.5, al-

though lower values would be fine, but require more iterations

to safely adjust the these parameters, which slows down the

optimization. No optional assumption for global maximum

was not necessary because we ensured a relatively large

difference between f(x0) and fmin. We found that k = 20
is a good batch size, although larger values would be just as
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GP regression and safe optimization  

unsafe 
regions

global 
maximum

region

Optimization problem (2D)
initialization 

regions

estimated
safety limit

Fig. 2. Exemplary optimization of the inverted Styblinski-Tank function with d = 2 and h = (1, 1): Gray regions indicate the true unsafe regions (values
below 10.0). The initialization point is randomly selected for a value above 15.0 (green regions in left plot). The exemplary safe optimization on the right
contour plot is initialized at x0 = (2.5, 2.5) and starts with tiny steps to adapt its GP hyper-parameters and then approaches the optimum in larger steps.
After each iteration, the estimated safety limit (blue line) is updated to ensure that the next observation leads to results above fmin.

okay as initialization length scales that are rather too small.

The remaining parameters are set according Table II.

16 different combinations of the scaling transformation

h between (0, 5, 0, 5) to (2, 2) vary the sensitivity of the

objective (n = 10 times each). In this way the reliability

can be evaluated for a wide range of different situations. The

exploration and optimization ran (all in all 160 times) over

300 iterations each, and no violation of the safety restriction

was observed, while the region of the global maximum was

always successfully detected. The right contour plot in Fig. 2

illustrates an exemplary optimization run with h = (1, 1)
initialized at x0 = (2.5, 2.5) · h, which is one of the most

distant safe points from the optimum x∗. By tiny steps starting

from x0 at the beginning, information is carefully collected

and thus the GP hyper-parameters are adjusted. After that one

approaches the global optimum in larger and more determined

steps. The safety limit is re-estimated after each iteration to

exclude potentially uncertain observations from the acquisition

function for the next iteration. Some former observations are

outside the estimated safety limit because of estimated noise.

If h is varied, the iterative optimization of the length scale

parameters �1..d leads to different values. To investigate the

correlation between the objective function scaling transforma-

tion values of h and the optimized length scale parameters

at the end of the 300 iterations and 300
20 = 25 optimization

runs, the classical statistics of Pearson correlation coefficients

(values close to 1 indicate a positive linear correlation, 0 is

random and close to -1 indicates a negative linear correlation)

are calculated. We found clear linear correlations for the x and

y dimension with coefficients of 0.994 and 0.993 (n = 160).

The variation of one dimension did not affect the optimization

of the other, which can also be seen in Fig.3. Furthermore, the

identified linear correlation is indicated as black dashed line.

Finally, we evaluated the self-adapting safe Bayesian op-

timization using the Styblinski-Tank function with d = 3
and d = 4 in different setups. For example, the initialization

point was set to x0 = (2.5, ..., 2.5) · h. For d = 3, the safe

x-scaling transformation of objective function
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Optimized length scale after safe optimization

Fig. 3. Evaluation of length scale optimization: For different scaling trans-
formations of the objective function, different length scale parameters are
adapted during safe optimization. Standard deviation for all 16 transformation
combination (each n = 10) is illustrated and no outliers were observed.
Different bar colors represent different scaling transformations of the other
dimension.

optimization required less than 160 iterations to safely find

the maximum region starting from one of the most distant

safe points. Safely optimizing the d = 4 setup successfully

required about 190 iterations to reach the region. All the tested

optimizations did not lead to failure and ensured the safety

criteria. The adapted length scale parameter results of Fig.3

are also applied to the higher-dimensional experiments.
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V. CONCLUSION

The hyper-parameter setup of GP regression usually requires

a significant amount of domain-specific knowledge (if no data

is available) or prior data to optimize the hyper-parameters.

But it is precisely the lack of these two factors that is the

main reason when safe optimization becomes interesting: If

the system is unknown and random experiments to generate

data are not allowed due to restrictions. We presented a novel

method for safe Bayesian optimization with self-adapting

hyper-parameters, which requires only one safe initial obser-

vation and easily selectable initial hyper-parameters. By safely

self-adapting the parameters, it was possible to find the global

optimum within an acceptable number of experiments and with

a reliability regarding safety requirements. Our modifications

demonstrated with SafeOpt [1] can be used equivalently for

other safe Bayesian optimization methods like StageOpt [18].

Iterative learning and automatic tuning control methods are

not only a popular research topic in theory, but also relevant

for applications, especially for industrial process control [20].

Ensuring safety during learning is essential here, as industry

best practice requires proof of safety [21]. With our mod-

ifications, e.g., Bayesian optimization with unknown hyper-

parameters of welding [22] could be applied to optimize the

process without producing bad-quality results during learning.

As advances in automation technology enable the inclusion of

time critical active learning in industrial process control [23],

we continue our research with applications that optimize such

processes with minimal manual adjustments addressing the

expense problem of machine learning projects in industry.

A. Final remarks

Even if the results are promising, there are remaining

aspects which should be noted before applying SASBO:
1) RBF kernel selection: We fixed the kernel selection to

the most popular one. For some objective functions, however,

other kernels are more appropriate, so extending the function-

ality of our approach with secure automatic kernel selection

would further improve its applicability. The combination of

minimizing complexity and maximizing data customization

should be considered [24] so that the efficiency of the proposed

method is maintained and suitable for active learning.
2) Only observations near the safety threshold: Whenever

the current known optimum is not significantly larger than the

safety threshold, the next iteration is risky. Especially for the

first iterations this remains an issue. We recommend providing

a guess for the expected optimum to remedy this risk.
3) High-dimensional objective functions: Even though we

used a batch size of k = 20 for all experiments presented, it

is quite logical that k must rise with larger d. This should also

be examined before applying this approach to more complex

problems, e.g. d > 4. Either way, k should be generously

selected.
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